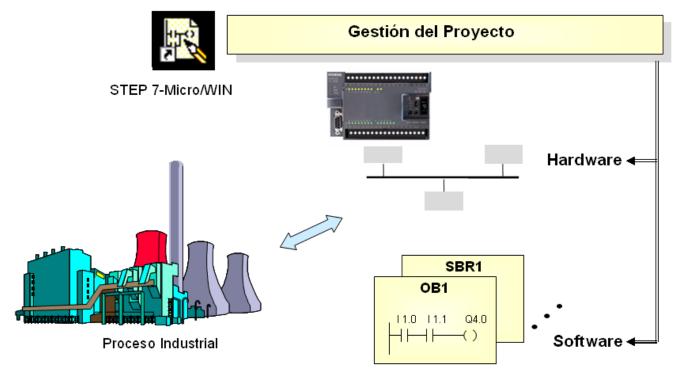
## 03/01 - STEP 7 Micro/WIN 32 V3.1.0.31

Autor: José A. Serantes Romero jasero@edu.xunta.es

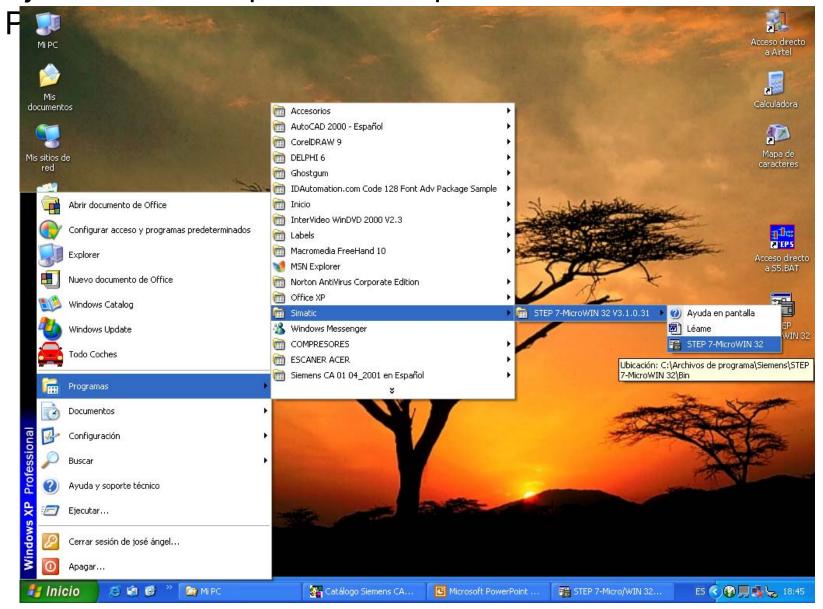

#### Del proceso industrial al proyecto (I)

- Punto de partida en el estudio de un proceso industrial:
  - Dividir el proceso en un conjunto de secciones y subsecciones.
  - De todas y cada una de ellas han de conocerse:
    - Respecto a la interactuación entre ellas
      - Cuáles interactúan con cuáles.
      - Cómo interactúan entre sí.
    - Respecto a la dependencia
      - Cuáles dependen de cuáles.
      - Cómo es esa dependencia.

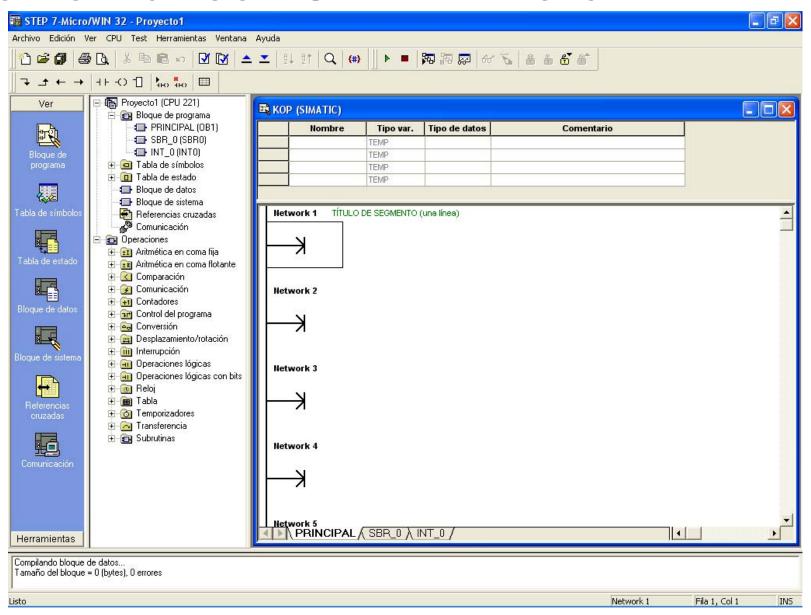
## Del proceso industrial al proyecto (II)

- Proyecto de automatización de un proceso industrial:
  - Para automatizar es necesario:
    - Conocer el estado del proceso.
      - Parámetros de cada una de sus secciones y sub-secciones.
      - Será necesario enumerar:
        - » Cantidad de parámetros digitales a medir en el proceso.
        - » Cantidad de parámetros analógicos a medir en el proceso.
        - » Cantidad y tipo de consignas del operario.
        - » ...
    - Interpretar esos estados y manipular adecuadamente esa información.
      - Almacenamiento.
      - Operaciones combinadas.
        - » Lógicas.
        - » Aritméticas.
      - Lazos de regulación.
      - **–** ...
    - Actuar sobre el estado del proceso.
      - Modificar el estado de cada una de sus secciones y sub-secciones.

## Del proceso industrial al proyecto (III)

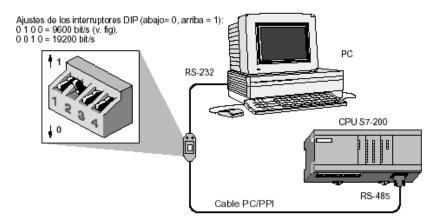



- Necesidades para la implantación de un proceso industrial:
  - Hardware
    - Número y tipo de entradas y salidas.
    - Número y tipo de módulos.
    - Capacidad y tipo de CPUs.
    - Sistemas de diálogo hombre máquina.
    - Redes

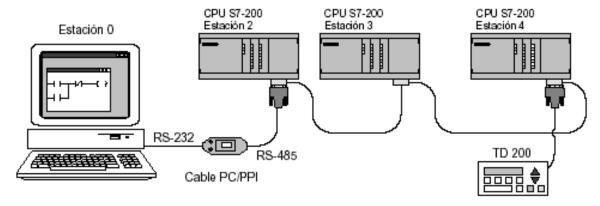

- Software
  - Estructuración del programa.
  - Almacenamiento y gestión interna de información
  - Datos de configuración.
  - Datos de comunicación.
- Documentación
  - Documentación del proyecto y el programa.
  - Mantenimiento.
  - · Utilización.

#### **STEP 7 Micro/WIN 32 V3.1.0.31**

• Ejecución de la aplicación después de su instalación en el

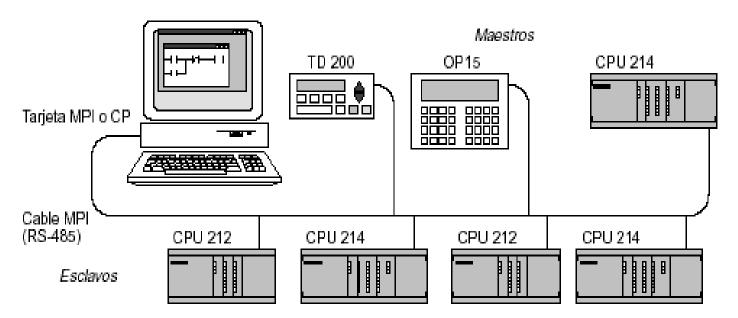



#### Comenzar con STEP 7 Micro - WIN



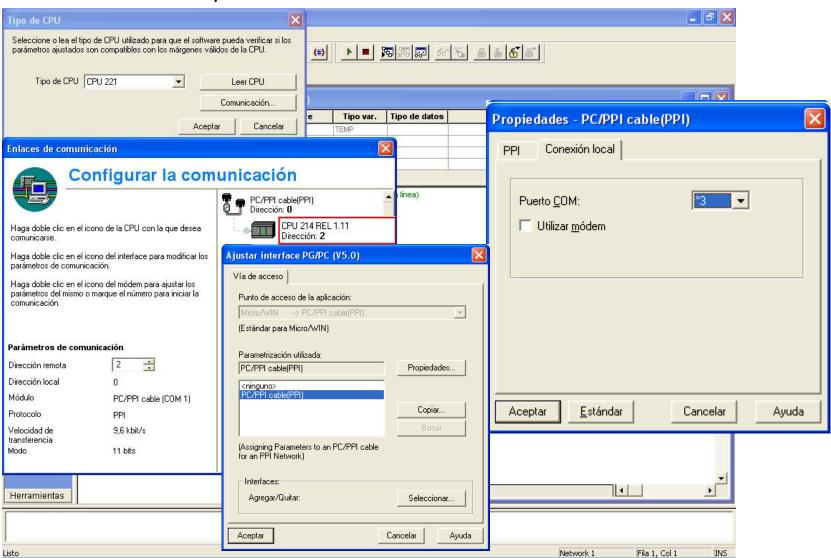

## Conexión de la programadora al PLC (I)

- Establecimiento de un enlace entre los componentes correctamente por PPI
  - Ajuste de los DIP para determinar la velocidad de transferencia deseada (9,6kbit/s)
  - Conexión del cable
    - Extremo RS-232 (canon 9 pines hembra) a COM1 o COM2 del PC
    - Extremo RS-485 (canon 9 pines macho) al interface de la CPU




- Establecimiento del enlace con una red de CPUs mediante PPI
  - Los componentes de la red comunicados entre sí .
  - Se puede direccionar cualquiera de ellas, sean esclavas o maestras.




#### Conexión de la programadora al PLC (II)

- Establecimiento de un enlace mediante MPI o CP
  - Si STEP 7 Micro/WIN está instalado en una programadora con
    - MPI (Interface Multi Punto) y/o
    - CP (Procesador de Comunicaciones)
  - Ambos disponen de un puerto RS-485 sencillo para la conexión a la red de automatización.
  - La red está compuesta por equipos con una dirección única en la red → direccionables.



## Configuración de los parámetros de comunicación en Step 7 Micro/WIN (II)

- Acceder a la barra de menú contextual y seleccionar la opción:
  - CPU → Tipo



#### La familia S7

- Ver presentación de familia S7:
  - CPUs
    - Gama S7 200
    - Gama S7 300
  - Reconocimiento.
  - Diferencias entre CPUs.
  - Capacidad de expansión.
  - Funciones de programación disponibles.
  - Comunicaciones.
  - Alimentaciones.
  - Protecciones.

**—** . . .

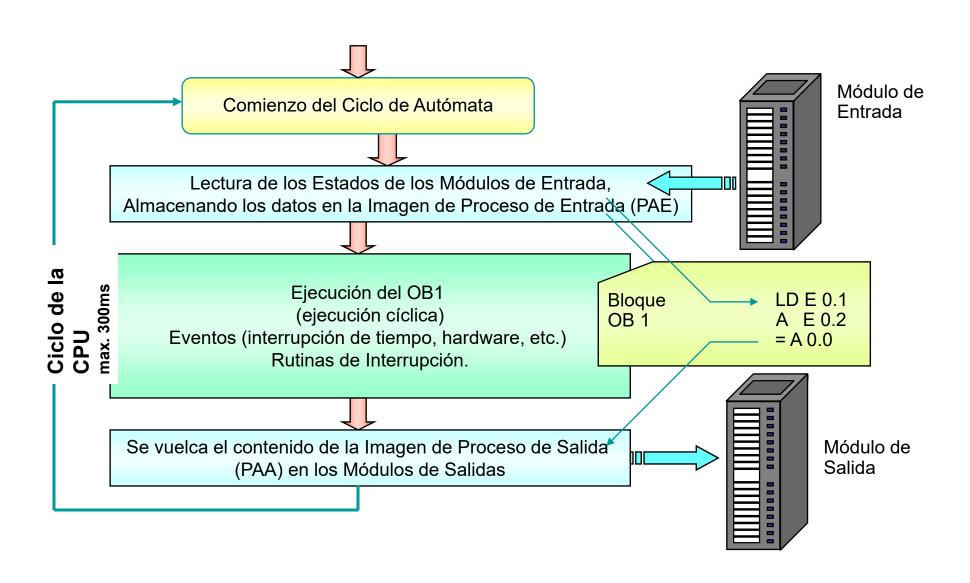
## El ciclo de la CPU S7-200 (I)

- La CPU ejecuta cíclicamente una serie de tareas, incluido el programa de usuario.
- Modos de operación de la CPU
  - RUN.- Ejecuta todas y cada una de las tareas del ciclo en el orden indicado.
  - STOP.- Ejecuta todas las tareas indicadas excepto el programa de usuario.



## El ciclo de la CPU S7-200 (I)

- Lectura de las entradas digitales
  - Al principio de cada ciclo se leen los valores presentes en las entradas y se escriben en la "PAE".
  - A esta tabla es a la que accede el programa de usuario para consultar el estado de las entradas.
- Lectura de las entradas analógicas
  - Su actualización NO forma parte de las tareas del ciclo.
  - A las entradas analógicas se accede directamente desde el programa de usuario.
- Ejecución del programa
  - Consiste en la ejecución desde la primera operación hasta la última.
  - El control total del programa permite:
    - · Consulta de entradas.
    - Consulta y modificación del estado de las salidas.
    - · Acceso y respuesta a una rutina de interrupción.
- Procesado de las peticiones de comunicación
  - La CPU procesa los mensajes que haya recibido por el interface de comunicación.
- Ejecución del diagnóstico de la CPU
  - Tanto en modo RUN como en STOP


## El ciclo de la CPU S7-200 (I)

- Escritura de las salidas digitales
  - Durante la ejecución del programa de usuario, las órdenes de ejecución de las salidas se escriben en la "PAA".
  - Al final del ciclo, la CPU vuelca el estado de esta tabla físicamente a las salidas.
  - Cuando la CPU pasa de RUN a STOP las salidas digitales pueden:
    - Conservar su estado actual o
    - · Adoptar un valor determinado
- Escritura de las salidas analógicas
  - Al igual que con las entradas analógicas, la CPU NO actualiza automáticamente las salidas analógicas ni ofrece una imagen del proceso de las mismas.
  - También en este caso, a las salidas analógicas se debe acceder directamente desde el programa de usuario.
- Ejecución de interrupciones
  - Interrupción: Rutina asociada a los eventos de interrupción.
  - Se almacenan como parte del programa de usuario pero NO se ejecutan con él.
  - Se ejecutan como respuesta al evento. Justo cuando ocurre el evento.
  - Las interrupciones se ejecutan
    - · Según su prioridad.

## El ciclo de la CPU S7-200 (II)

- Imagen del proceso de las entradas y salidas
  - En general, es aconsejable utilizar las imágenes del proceso PAE y PAA que acceder directamente a las entradas o salidas durante la ejecución del programa de usuario.
  - Razones de la existencia de las PAE y PAA
    - Efecto estabilizador del sistema
      - Todas las entradas se leen en un momento concreto.
      - Todas las salidas se escriben en otro momento concreto.
    - El tiempo de acceso del programa de usuario a las PAE y PAA es menor que el de acceso directo, con lo cual disminuye el tiempo de ciclo.
    - Flexibilidad adicional
      - Las entradas son unidades de bit → a ellas sólo se puede acceder directamente bit a bit.
      - A las PAE y PAA se puede acceder en formato de bit, byte, word y dword.
- Control directo de entradas y salidas
  - El acceso directo a una entrada NO modifica el contenido de la dirección correspondiente en la PAE.
  - El acceso directo a una salida SI modifica el contenido de la dirección correspondiente de en la PAA.

#### El ciclo de la CPU S7-200

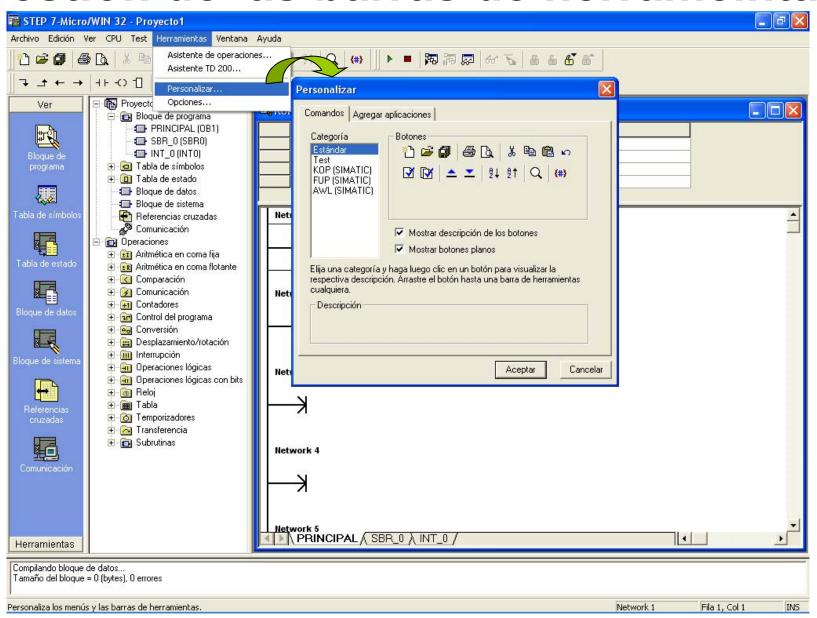


#### Estructura de una solución de automatización (I)

- Para automatizar un proceso existen infinitas soluciones.
- Conjunto de reglas generales de común aplicación a numerosos proyectos
  - Estructuración del proceso o la instalación.
  - Especificación de las unidades funcionales.
  - Diseño de los circuitos de seguridad cableados.
  - Definición de las estaciones de operador.
  - Creación de los planos de configuración del PLC.
  - Lista de nombres simbólicos (si se desea utilizar en el direccionamiento)
- Además de lo anterior, también hay que tener en cuenta
  - Hábitos propios de la empresa.
  - Experiencia profesional

#### Estructura de una solución de automatización (II)

- Estructuración del proceso o la instalación.
  - Definir secciones del proceso independientes entre sí →
  - Determinación de los límites de las distintas partes de la automatización →
  - Para finalmente poder definir y describir con exactitud
    - Las áreas de funciones.
    - Los recursos para cada una de estas áreas.
- Especificación de las funciones de cada sección del proceso o instalación
  - Entradas y salidas necesarias (analógicas y digitales)
  - Descripción exacta del funcionamiento (inicio, desarrollo y fin de cada función)
  - Condiciones de habilitación de cada actuador
    - Estados que se deben alcanzar antes de que se ejecute cada función.
  - Descripción del interface de operador (diálogo hombre-máquina)
  - Interfaces con otras secciones del proceso o de la instalación.


#### Estructura de una solución de automatización (III)

- Diseño de los circuitos de seguridad cableados
  - Determinación de
    - Posibilidades de que un arranque inesperado o fallo en el sistema de automatización y daños humanos y/o materiales que puedan provocar.
    - Aparatos que requieren de cableado permanente por motivos de seguridad.
  - Esto hace necesario utilizar dispositivos de protección independientes del PLC que eviten riesgos.
  - Criterios de diseño de circuitos de seguridad cableados
    - Definición de los posibles malos funcionamientos que puedan causar peligro.
    - Definición de las condiciones que garanticen la seguridad.
    - Definición de las operaciones a realizar por el PLC
    - Importante: funcionamiento normal + funcionamiento anormal ⇒ funcionamiento seguro
    - Prever dispositivos independientes de la CPU
    - Transmitir información clara y concisa a los interfaces de operador.
    - Definir todos los criterios de seguridad a mayores para que el proceso sea seguro y fiable.

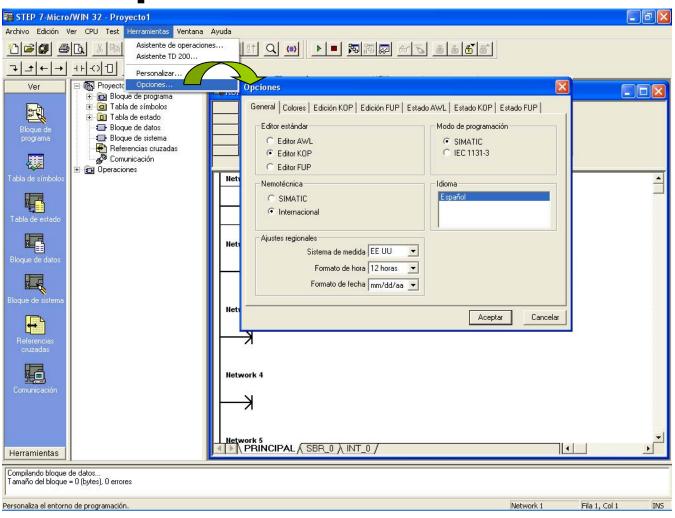
#### Estructura de una solución de automatización (IV)

- Definición de las estaciones de operador
  - Panorámica de la ubicación de todas las estaciones de operador con respecto al proceso.
  - Disposición mecánica de los aparatos
    - Pantallas, paneles operativos, interruptores, lámparas, ...
  - Esquemas eléctricos completos para su consulta.
- Planos de configuración del sistema de automatización incorporando los siguientes puntos
  - Ubicación de
    - Las CPUs y los módulos de ampliación.
    - Disposición mecánica de las CPUs y los módulos de ampliación.
    - Esquemas eléctricos de las CPUs y los módulos de ampliación.

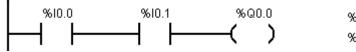
#### Gestión de las barras de herrameintas

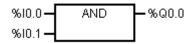


#### Estructura del proyecto

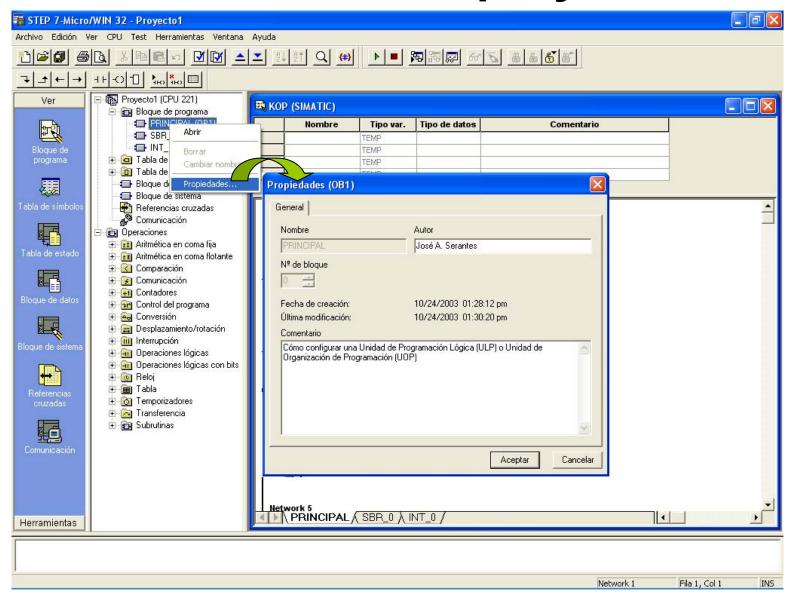

 Cinco componentes principales:



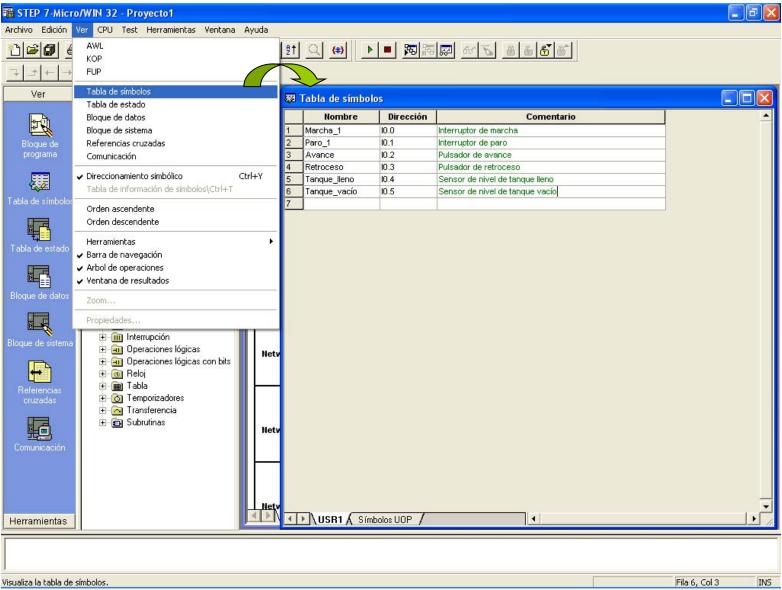

#### Estructura del proyecto


- El Bloque de programa contiene
  - El código ejecutable
    - Programa principal (OB1)
    - Subrutinas o rutinas de interrupción.
  - Comentarios
- El Bloque de datos contiene
  - Datos
    - Valores iniciales,
    - Resultados de operaciones,
    - Constantes,
  - Comentarios
- El Bloque de sistema contiene la información de la configuración del PLC
  - Parámetros de comunicaciones,
  - Áreas de datos remanentes,
  - Filtros de entradas analógicas y digitales,
  - Nivel de acceso al PLC,
- La tabla de símbolos
  - Permite utilizar direccionamiento simbólico para que la programación sea más simple
  - MicroWin traduce todos los símbolos en direcciones absolutas antes de enviar el programa al PLC.
- La tabla de estados
  - Contiene las direcciones:
    - De las que se desea conocer su estado.
    - De las que se desea modificar su valor (forzar)

#### **Opciones**

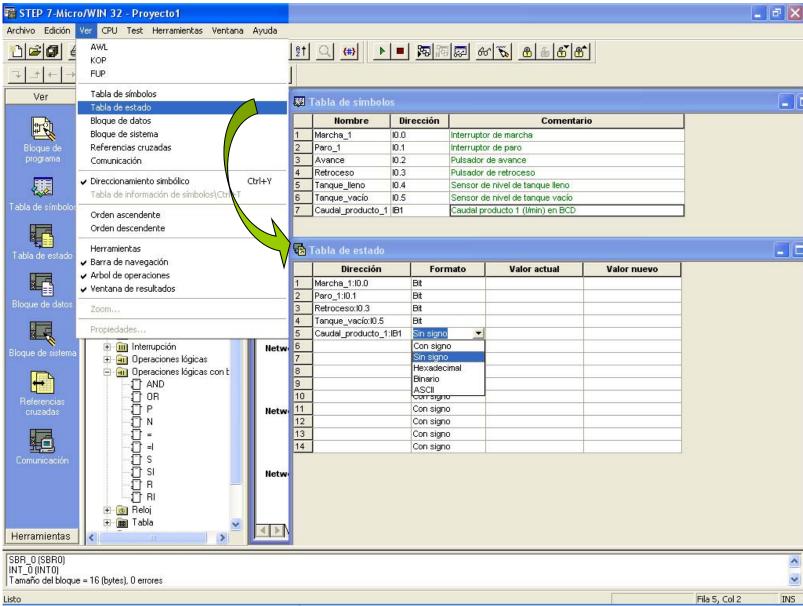




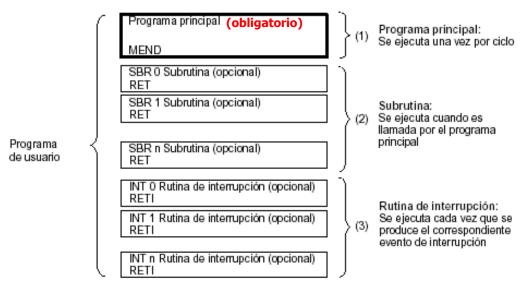



## Creación de un proyecto




#### La tabla de símbolos




- En cualquier momento del desarrollo del proyecto es posible:
  - Consultarla.
  - Ampliarla (añadir nuevos símbolos)
  - Reducirla (eliminar símbolos existentes)

#### Tabla de estado



 Permite observar la evolución de los valores asociados a las direcciones seleccionadas durante la ejecución del programa del PLC

# Elementos básicos en la estructuración de programas de PLC



- Proceso de puesta en funcionamiento de un programa de PLC
  - El programa de PLC se crea con Micro/WIN y se transfiere al PLC.
  - El PLC ejecuta el programa cíclicamente.
- Un programa de PLC contiene tres partes básicas:
  - Programa principal
    - Operaciones que controlan la aplicación.
    - Ejecutadas de forma secuencial en cada ciclo de la CPU.
    - Si se desea realizar un fin condicional, ordenar ejecución de instrucción "END"
  - Subrutinas
    - Elementos opcionales del programa.
    - Sólo se ejecutan si se llaman desde el programa principal.
    - Si se desea realizar un fin condicional, ordenar ejecución de instrucción "RET"
  - Rutinas de interrupción
    - · Elementos opcionales del programa.
    - Se ejecutan como respuesta inmediata al evento de interrupción al que estén asociadas.
    - Si se desea realizar un fin condicional, ordenar ejecución de instrucción "RETI"

# Errores y violación de las reglas de compilación en la CPU

- Errores fatales y mensajes asociados
  - Son errores graves que provocan
    - Que la CPU no pueda ejecutar todas las funciones.
    - · O incluso ninguna de ellas.
  - Su tratamiento es conducir a la CPU a un estado seguro en el que
    - Se puedan analizar las condiciones que originaron el error.
    - Y se pueda operar para eliminarlo.
  - Cómo saber que se trata de un error fatal
    - La CPU cambia a modo STOP.
    - Además se enciende el led SF (System Failure)
    - Se desactivan las salidas
      - Nota: Se cargan los valores predeterminados ajustados con anterioridad en la tabla de salidas.
- Errores de programación en tiempo de ejecución
  - Durante la ejecución del programa de usuario pueden aparecer errores NO fatales (p. ej. errores de direccionamiento)
  - Entonces, la CPU genera un código de error NO fatal en tiempo de ejecución
    - Ejemplo: Hacer un bucle cerrado en el que se rebase el tiempo de ciclo
- Violación de reglas de compilación
  - Antes de cargar un programa en la CPU, ésta lo compila.
  - Si durante la compilación se detecta una violación de las reglas (p. ej. una operación no válida), la CPU detiene el proceso de carga del programa.
  - Además, genera un código de error NO fatal que se puede observar en la ventana de resultados.

## Códigos de error (I)

#### Códigos de errores fatales y mensajes

| Código de error | Descripción                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0000            | No hay errores fatales                                                                                                      |
| 0001            | Error de suma de verificación en el programa de usuario                                                                     |
| 0002            | Error de suma de verificación en el programa KOP compilado                                                                  |
| 0003            | Error de tiempo en la vigilancia del tiempo de ciclo (watchdog)                                                             |
| 0004            | Error EEPROM interno                                                                                                        |
| 0005            | Error EEPROM interno de suma de verificación en el programa de usuario                                                      |
| 0006            | Error EEPROM interno de suma de verificación en los parámetros de configuración                                             |
| 0007            | Error EEPROM interno de suma de verificación en los datos forzados                                                          |
| 0008            | Error EEPROM interno de suma de verificación en los valores predeterminados de la imagen de proceso de las salidas          |
| 0009            | Error EEPROM interno de suma de verificación en los datos de usuario, DB1                                                   |
| 000A            | Error en el cartucho de memoria                                                                                             |
| 000 B           | Error de suma de verificación del eartucho de memoria en el programa de usuario                                             |
| 000C            | Error de suma de verificación del cartucho de memoria en los parámetros de configuración                                    |
| 000D            | Error de suma de verificación del cartucho de memoria en los datos forzados                                                 |
| OOOE            | Error de suma de verificación del cartucho de memoria en los valores predeterminados de la imagen de proceso de las salidas |
| 000 F           | Error de suma de verificación del eartucho de memoria en los datos de usuario, DB1                                          |
| 0010            | Error interno de software                                                                                                   |
| 0011            | Error en el direccionamiento indirecto del contacto de comparación                                                          |
| 0012            | Error: valor no válido del contacto de comparación                                                                          |
| 0013            | Cartucho de memoria vacio o programa no apto para esta CPU                                                                  |

#### Eliminación de errores fatales

- Error fatal → la CPU detiene la ejecución del programa
  - Error fatal muy grave → La CPU no puede ejecutar ninguna función.
  - Error fatal leve → La CPU aún puede ejecutar algunas funciones.
  - En ambos casos,
    - la CPU indica el error fatal mediante:
      - Led de STOP encendido.
      - Led de SF (System Failure) encendido
    - Se desactivan las salidas
      - Nota: Se cargan los valores predeterminados ajustados con anterioridad en la tabla de salidas.
- Tratamiento de los errores fatales
  - Conducir a la CPU a un "estado seguro"
  - Para a continuación.
    - Detectar las causas que han provocado el error accediendo a la opción de menú:
      - "CPU → Información".
    - Eliminar las causas que han provocado el error.
  - Una vez eliminado el error, para pasar al funcionamiento normal
    - Pasar el selector de modos a STOP y luego a RUN o TERM
    - · Al hacer esto,
      - la CPU resetea la condición de error fatal y
      - ejecuta un diagnóstico de arranque para verificar que el error se ha corregido
- Caso particular: Incapacidad de establecer comunicación con la CPU
  - En este caso es imposible visualizar el código de error.
  - En este caso se trata de un error de hardware que debe reparar el servicio

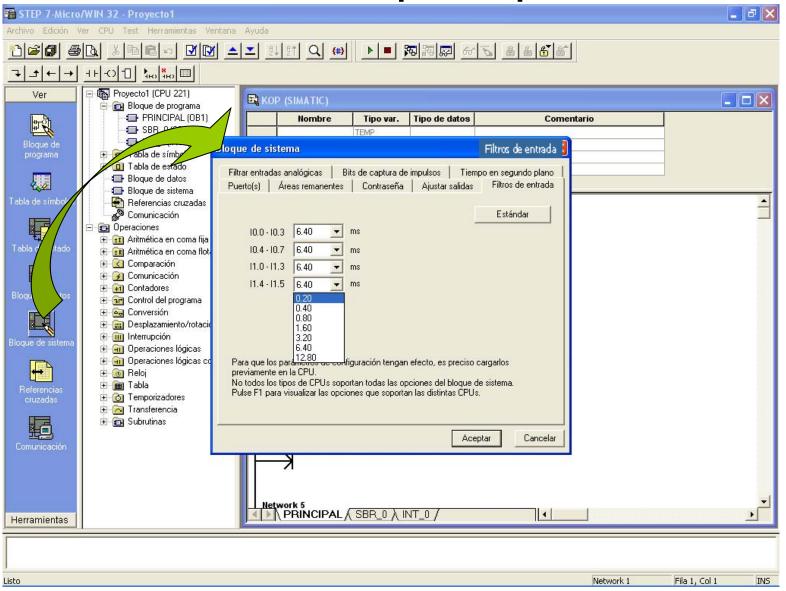
## Códigos de error (II)

#### • Errores de programación en tiempo de ejecución

| Código de error | Error de programación del tiempo de ejecución (no fatal)                                                                                                                    |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0000            | No se presentó ningún error                                                                                                                                                 |  |
| 0001            | Cuadro HSC habilitado antes de ejecutar el cuadro HDEF                                                                                                                      |  |
| 0002            | Interrupción de entrada asignada a una entrada que ya está asociada a un HSC (conflicto)                                                                                    |  |
| 0003            | Entradas asignadas a un HSC que ya está asociado a una interrupción de entrada (conflicto)                                                                                  |  |
| 0004            | Se ha intentado ejecutar una operación ENI, DISI o HDEF en una rutina de interrupción                                                                                       |  |
| 0005            | Antes de finalizar el primer HSC se ha intentado ejecutar un segundo HSC con el mismo número (HSC de la rutina de interrupción en conflicto con HSC del programa principal) |  |
| 0006            | Error de direccionamiento indirecto                                                                                                                                         |  |
| 0007            | Error en datos para operación TODW (Escribir en reloj de tiempo real)                                                                                                       |  |
| 0008            | Excedida la profundidad máxima de anidado para subrutina de usuario                                                                                                         |  |
| 0009            | Ejecución de una operación XMT o RCV mientras se está ejecutando otra operación XMT o RCV                                                                                   |  |
| O00A            | Se ha intentado redefinir un HSC ejecutando otra operación HDEF para el mismo HSC                                                                                           |  |
| 0091            | Error de margen (con información sobre direcciones): verificar las áreas de operandos                                                                                       |  |
| 0092            | Error en el campo de contaje de una operación (con información sobre el contaje): verificar el valor máximo de contaje                                                      |  |
| 0094            | Error de margen al escribir en la memoria no volátil (con información sobre direcciones)                                                                                    |  |

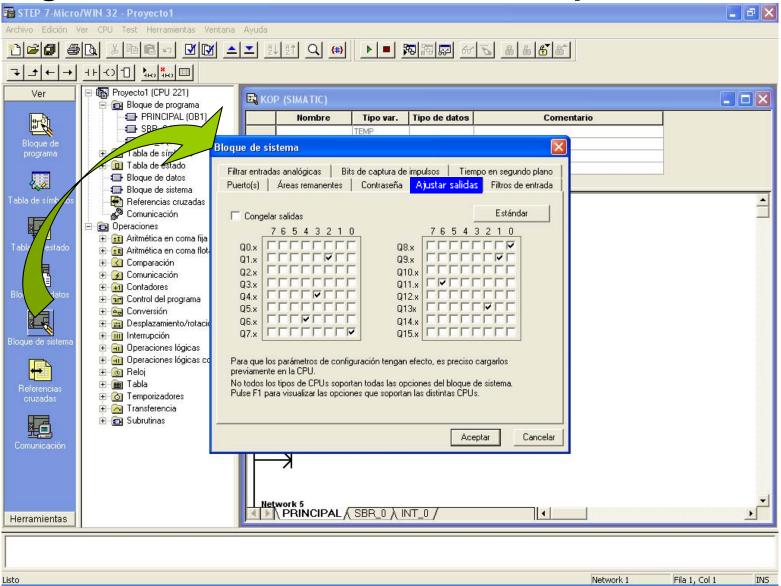

## Códigos de error (III)

#### Violación de reglas de compilación


| Código de error | Error de compilación (no fatal)                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0080            | Programa demasiado extenso para la compilación: reducir el tamaño del programa                                                                         |
| 0081            | Rebase negativo de la pila: dividir el segmento en varios segmentos                                                                                    |
| 0082            | Operación no válida: comprobar la nemotécnica de la operación                                                                                          |
| 0083            | Falta MEND u operación no admisible en el programa principal: agregar la operación MEND o borrar la operación incorrecta                               |
| 0084            | Reservado                                                                                                                                              |
| 0085            | Falta FOR: agregar la operación FOR o borrar la operación NEXT                                                                                         |
| 0086            | Falta NEXT: agregar la operación NEXT o borrar la operación FOR                                                                                        |
| 0087            | Falta meta (LBL, INT, SBR): agregar la meta apropiada                                                                                                  |
| 0088            | Falta RET u operación no admisible en una subrutina: agregar RET al final de la subrutina o borrar la operación incorrecta                             |
| 0089            | Falta RETÍ u operación no admisible en una rutina de interrupción: agregar RETÍ al final de la rutina de interrupción o borrar la operación incorrecta |
| 008A            | Reservado                                                                                                                                              |
| 008B            | Reservado                                                                                                                                              |
| 008C            | Meta doble (LBL, INT, SBR): cambiar el nombre de una de las metas                                                                                      |
| 008D            | Meta no válida (LBL, INT, SBR): asegurarse de que el número admisible de metas no se haya excedido                                                     |
| 0090            | Parámetro no válido: comprobar los parámetros admisibles para la operación                                                                             |
| 0091            | Error de margen (con información sobre direcciones): verificar las áreas de operandos                                                                  |
| 0092            | Error en el campo de contaje de una operación (con información sobre el contaje): verificar el valor máximo de contaje                                 |
| 0093            | Excedida la profundidad de anidado FOR/NEXT                                                                                                            |
| 0095            | Falta la operación LSCR (cargar SCR)                                                                                                                   |
| 0096            | Falta la operación SCRE (fin de SCR) u operación no admisible antes de la operación SCRE                                                               |

#### Eliminación de errores NO fatales

- Pueden
  - mermar parcialmente el funcionamiento de la CPU,
- Pero no impiden
  - Ejecutar el programa.
  - Leer entradas.
  - Actualizar salidas.
- Categorías de errores
  - Errores durante el tiempo de ejecución
    - · Ejemplo:
      - La CPU al pasar a modo RUN (entre otras cosas) lee la configuración de las E y S y almacena esta información.
      - Esta información se relee y compara cada ciclo con la del momento del arranque.
      - Si durante el funcionamiento normal detecta un cambio, se activa el bit de error correspondiente.
    - Son errores NO fatales que
      - Se detectan en modo RUN y
      - Se almacenan en *Marcas especiales (SM)*
    - El propio programa puede (y debe)
      - Consultar esas marcas especiales y
      - Tomar decisiones al respecto
  - Errores de compilación del programa
    - La CPU compila siempre el programa antes de que éste sea cargado.
    - Si durante la compilación se detecta una violación de las reglas
      - Se genera un código de error asociado (que se puede observar en la ventana de resultados, y
      - Se suspende el proceso de carga del programa en la CPU.
  - Errores de programación durante el tiempo de ejecución
    - Ejemplo:
      Network 1 TÍTULO DE SEGMENTO (una línea)
      - Desbordar la capacidad de contaje de un contador.
    - También son errores NO fatales que
      - Se detectan en modo RUN y
      - Se almacenan en *Marcas especiales (SM)*
    - También el propio programa puede (y debe)
      - Consultar esas marcas especiales y
      - Tomar decisiones al respecto




#### Uso de los filtros de entrada para suprimir interferencias



- Filtros de entrada
  - Utilidad: Filtrado de ED para eliminar las interferencias procedentes del cableado conectado a ellas:
  - La CPU no dispone de una tabla de imagen de EA → Las EA no se filtran automáticamente

#### Configuración de los estados de señal para las salidas



#### Ajustar salidas

- Utilidades:
  - Hacer que las SD adopten valores conocidos cuando la CPU pasa al estado STOP o
  - Hacer que el estado de las SD al pasar la CPU a STOP sea justo el que tenían en el último ciclo antes de pasar a STOP (Congelar salidas)

## Entradas rápidas

- Son ED especiales capaces de contar más deprisa de lo que son capaces las ED convencionales, cuyas velocidades de contaje dependen del tiempo de ciclo de la CPU.
- Se utilizan para lectura de trenes de impulsos de frecuencias altas
  - Encoders
- Según el modelo de CPU, se dispone de:
  - Un contador software: HSC0
    - Contaje ascendente y descendente mediante un bit que marca el sentido de contaje.
    - Asistido por una entrada de reloj única.
    - Frecuencia de contaje máxima 2kHz.
  - Hasta dos contadores hardware: HSC1 y HSC2
    - Configurables en 12 modos de operación distintos.
    - La frecuencia máxima de contaje cambia de una CPU a otra.
    - Son independientes de la CPU → no la cargan de trabajo.
    - Trabajan independientemente sin interferirse entre sí.
    - Los contadores A/B permiten elegir velocidad simple o cuádruple para el contaje.

## Salidas de impulsos rápidos

- Son SD capaces de
  - Generar Trenes de Impulsos de Salida rápidos (PTO)
    - Salida en cuadratura para
      - Una cantidad de pulsos determinada (1 .. 429.4967.295).
      - Durante un tiempo de ciclo determinado.
        - » 250μs .. 65535μs o
        - » 2ms .. 65535ms
        - » Se aconseja no ajustar a un número impar de tiempo. Causa distorsión en el tren.
  - Controla la modulación del ancho de impulso (PWM)
    - Permite definir un tiempo de ciclo fijo con una salida de ancho de impulso variable.
    - Límites de la modulación

| Tiempo de ciclo | ancho de impulsos |
|-----------------|-------------------|
| 250μs 6535μs    | 0μs 6535μs        |
| 2ms 65535ms     | 0ms 65535ms       |