Implementacion de IA/ML con Sensores
Inerciales para Analisis de Dominadas
en Biomecanica Deportiva

1. Marco Teorico General

La Inteligencia Artificial (1A), especificamente el aprendizaje automatico (ML) y el
aprendizaje profundo (DL), ha cobrado gran relevancia en biomecanica en afios recientes.
Estas técnicas permiten analizar datos de movimiento humano (cinematica, cinética, EMG,
etc.) de manera objetiva y automatizada. En biomecanica deportiva, ML se emplea para
tareas como reconocimiento de actividades, estimacion de parametros biomecanicos
y deteccién de eventos clave en gestos deportivos. Por ejemplo, modelos de ML se han
usado para estimar angulos articulares y fuerzas articulares a partir de sensores, mostrando
alta precision frente a métodos tradicionales.

Metodologias de desarrollo: Para guiar proyectos de ML en biomecanica, se suele seguir
un flujo similar a CRISP-DM adaptado a ML (conocido como CRISP-ML). Este enfoque
define fases iterativas: comprension del dominio y los datos, preparacion de datos,
modelado, evaluacion y despliegue, incorporando consideraciones especificas de ML (como
gestion de riesgos y calidad). La idea es mantener un proceso trazable y repetible que
permita volver atras y refinar pasos segun los resultados obtenidos.

Casos de estudio: En diversos ejercicios deportivos ya se han aplicado ML para deteccién
automatica y analisis de movimiento:

e Sentadillas (squat): Se han entrenado modelos para reconocer sentadillas y evaluar
su técnica. Por ejemplo, sistemas portables pueden clasificar si una sentadilla es
correcta o no, o detectar fases como la posicion baja y alta, mediante senales de
acelerometros en la cintura o piernas. También se han predicho cargas en
articulaciones durante la sentadilla usando ML en lugar de dinamica inversa clasica.

e Saltos: Con un solo IMU en el cuerpo es posible predecir la altura de un salto vertical
o determinar parametros como tiempo de vuelo. Modelos de regresion no lineal (p.
ej., bosques aleatorios o redes neuronales) han logrado estimar la altura de salto a
partir de caracteristicas de aceleracion con errores pequenos, ofreciendo una
alternativa a las plataformas de contacto.

e Carrera: En analisis de la marcha y carrera, ML se usa para detectar eventos como
contacto y despegue del pie, o para clasificar el patrén de pisada (taldn vs punta) a
partir de IMUs en los pies. Por ejemplo, redes neuronales recurrentes pueden
identificar el momento de impacto con un error de solo milisegundos comparado con
sistemas de referencia. Asimismo, modelos han clasificado la técnica de carrera o

estimado variables como longitud de zancada y fuerzas de reaccion al suelo
combinando datos inerciales y algoritmos de ML.

Tareas genéricas de modelado: Segun el objetivo, el problema se puede plantear de
distintas formas: (a) Clasificaciéon Para reconocer la actividad realizada (p. €j., identificar si
un movimiento es una sentadilla, un salto o una dominada) o la calidad del movimiento
(correcto/incorrecto); (b) Regresién para predecir valores continuos como angulos
articulares, velocidad, fuerza o puntuaciones de desempenio; (c) Deteccion de eventos
para encontrar instantes especificos en la sefal (por ejemplo, el inicio y fin de una
repeticion, o el momento de mayor flexion de codo). También existen enfoques de
segmentacion temporal, donde se asigna una etiqueta de fase a cada momento de la
secuencia (similar a una clasificacion frame a frame).

Técnicas de ML utilizadas: Tradicionalmente, en reconocimiento de acciones con sensores
corporales se emplearon algoritmos clasicos de ML como k-NN, arboles de decisién,
bosques aleatorios, maquinas de vectores de soporte (SVM) o analisis discriminante. Estos
algoritmos usan conjuntos de caracteristicas manuales extraidas de las sefales y han
logrado buenos resultados en tareas sencillas. Sin embargo, en la ultima década el
aprendizaje profundo ha ganado popularidad debido a su capacidad para extraer
automaticamente patrones complejos. Modelos como las redes neuronales
convolucionales (CNN) y redes neuronales recurrentes (RNN) (p. €j., con celdas LSTM)
se han aplicado exitosamente a datos temporales de IMUs. Mas recientemente, se han
introducido arquitecturas avanzadas con mecanismos de atencién y modelos tipo
transformer, demostrando mejorar la precision en tareas de reconocimiento de actividades
humanas. Un ejemplo concreto: Jeong et al. emplearon una CNN profunda sobre datos de
acelerémetro de mufeca para clasificar ejercicios como dominadas, remo con barra, press
de banca, dips, sentadillas, peso muerto, etc., alcanzando hasta un 96% de exactitud en la
clasificacion multi-ejercicio. En problemas de regresion biomecanica (p. €j., estimar
angulos o momentos articulares), estudios comparativos han hallado que tanto métodos de
ML tradicionales como los modernos pueden ser eficaces; por ejemplo, al predecir la
cinematica 3D de miembros inferiores con IMUs, un bosque aleatorio y una CNN obtuvieron
los menores errores frente a SVM u otros modelos. En general, la combinacién de sensores
portables con modelos ML bien entrenados se vislumbra como una herramienta capaz de
suplir equipos de laboratorio costosos (como la captura de movimiento 6ptica) en muchos
analisis.

2. Aplicacion Especifica en Dominadas

En el caso particular de las dominadas (ejercicio de traccion vertical en barra fija), el
objetivo es utilizar IMUs y algoritmos |IA/ML para analizar automaticamente la ejecucion.
Varias sub-tareas especificas se abordan en este contexto:

Segmentacion del gesto en fases: Una dominada completa puede dividirse en
fases clave, por ejemplo: inicio(posicion colgado, brazos extendidos), ascenso hasta
“catch” (maxima altura, con mentén sobre la barra) y descensolfin (retorno a la
posicién inferior). Un sistema de ML puede aprender a segmentar la sefal en estas
fases. Esto equivale a detectar eventos como el comienzo y el final de cada
repeticion y el instante pico superior. En la practica, suelen identificarse estos puntos
buscando caracteristicas en las sefiales inerciales (p. ej., un cambio de direccién en
la aceleracion vertical marca el punto mas alto). Algoritmos de deteccién de eventos
pueden ser reglas basadas en umbrales o modelos entrenados para clasificar cada
instante como “subida” vs “bajada”. Por ejemplo, en movimientos explosivos se ha
logrado segmentar fases con alta exactitud usando un solo sensor y ML. En
dominadas, podria entrenarse un modelo secuencial (como una RNN/LSTM) que
etiqueta cada frame de tiempo con la fase correspondiente, o usar un enfoque de
deteccion de picos en la sefal filtrada para delimitar las fases.

Detecciéon automatica de repeticiones: Contar cuantas dominadas realiza el atleta
es un requisito basico. Usando IMUs, esto se puede lograr detectando ciclos en los
datos. Métodos simples identifican repeticiones encontrando picos en la aceleracion
vertical o rotacional del torso. Métodos basados en ML pueden aprender patrones
completos de una repeticion. Una estrategia es combinar un clasificador de
actividad con un modulo de conteo: por ejemplo, Patalas-Maliszewska et al.
proponen un sistema con un moédulo de reconocimiento de actividad (ARM) para
identificar cuando el sujeto esta haciendo dominadas (versus otros ejercicios o
pausa) y luego un médulo de conteo de repeticiones (RCM) que registra cada
ciclo detectado. En su implementacion, una red CNN procesa ventanas cortas de
datos para distinguir entre “dominada” u otras actividades, y una vez que se
identifica la actividad, el sistema contabiliza las repeticiones detectando transiciones
en la salida del clasificador. Los resultados reportados son muy satisfactorios: con
ventanas deslizantes solapadas y datos crudos de IMU, el modelo alcanzé ~0.92 de
accuracy en la clasificacion de ejercicio, y en conteo de repeticiones logré un 93%
de acierto (error < *1 repeticién), que sube a 97% permitiendo un error de +2
repeticiones. Esto indica que el contador automatico rara vez se desvia por mas de
una repeticion del conteo real.

Estimacién/regresién de angulos articulares: Otra aplicacion de IA es inferir
parametros cinematicos, como los angulos de codo y hombro durante la dominada,
directamente desde los datos del IMU. Esto equivaldria a un modelo de regresion
que mapea las caracteristicas del sensor (aceleracion, velocidad angular,
orientacion) a valores de angulo en grados. Tradicionalmente, si se coloca un IMU
en cada segmento (por ejemplo, uno en antebrazo y otro en brazo), se podria
calcular el angulo del codo mediante la diferencia de orientaciones (integrando los
giroscopios y usando filtros de fusion sensor). Pero con ML se puede ir mas alla: por
ejemplo, estimar angulos de multiples articulaciones o hacerlo con menos

sensores de los necesarios fisicamente. Estudios de rehabilitacién han demostrado
gue un modelo puede aprender a predecir el angulo de rodilla o cadera usando las
aceleraciones medidas en un solo sensor en el muslo. En dominadas, podria usarse
un modelo entrenado con datos de referencia (como captura de movimiento) para
predecir en tiempo real el angulo de codo con solo un IMU en la mufieca o brazo.
Moghadam et al. compararon varios algoritmos de ML para estimar curvas
completas de angulos articulados de la marcha usando IMUs, encontrando que las
redes CNN y bosques aleatorios daban los menores errores respecto a la referencia
optica. Aunque no hay mucha literatura especifica de dominadas, es razonable
pensar que un modelo secuencial (p. ej. LSTM) entrenado con datos cinematicos
de dominadas podria predecir con pocos grados de error la flexidn/extension de
codo y hombro durante cada repeticién.

e Clasificaciéon de variantes técnicas: Las dominadas tienen variaciones (pronacion
vs supinacién de agarre — dominada vs. chin-up —, uso de impulso de piernas como
en kipping pull-ups vs estricto, amplitud de movimiento incompleta, etc.). Un sistema
basado en ML puede ser entrenado para reconocer automaticamente la variante
o incluso detectar defectos técnicos. Por ejemplo, se podria clasificar si el atleta esta
realizando una dominada estricta o con impulso (kipping) analizando la sefal: un
impulso generara un patrén distinto de aceleracion del torso y de las piernas. Del
mismo modo, una dominada con agarre supino podria diferenciarse por el patrén de
movimiento del antebrazo. En ausencia de trabajos especificos publicados sobre
esto, se puede extrapolar de ejercicios similares. En el caso de flexiones de pecho
(push-ups), por ejemplo, ya se ha logrado clasificar variaciones (estandar, con
aplauso, con apoyo de rodillas) usando datos inerciales con algoritmos de
clasificacion supervisada. Para las dominadas, un clasificador multiclase
(posiblemente una CNN 1D sobre la sefial temporal de IMU) podria distinguir entre
varios tipos de dominada. Adicionalmente, la |A puede servir para identificar errores
de forma: por ejemplo, si el usuario no desciende completamente (angulo de codo
no llega a 180°) o no supera la barbilla, un modelo entrenado con ejemplos
etiquetados de “correcto/incorrecto” podria detectar estas situaciones para
retroalimentacion.

Modelos y variables empleados: En los trabajos prototipicos que incluyen dominadas, se
han usado generalmente redes neuronales profundas (p. ej., CNN) para el reconocimiento
de la actividad y contar repeticiones. Estas redes toman como entrada ventanas cortas de
sefal multivariada (aceleraciones y giroscopios de uno o varios IMUs). Algunas
arquitecturas utilizan capas convolucionales seguidas de capas densas, a veces
complementadas con capas recurrentes o de pooling temporal, para captar la dinamica de
cada repeticion. Las variables mas relevantes suelen provenir de la aceleracién vertical
del cuerpo o del movimiento angular del segmento superior: en una dominada, la
aceleracion vertical del pecho o mufieca muestra un patrén oscilante por cada repeticion
(positivo al subir, negativo al bajar), y suele tener un punto cero o inversiéon en la cima.
Asimismo, la orientacién del torso cambia ligeramente (inclinacién hacia atras al subir). Un
estudio multi-ejercicio encontré que ubicar un IMU en la mufieca dominante proporciona
informacién suficiente para distinguir ejercicios de la parte superior del cuerpo, lo que
sugiere que para clasificar dominadas vs otros ejercicios es crucial la sefial de la extremidad
superior. Sin embargo, para estimar angulos de codo con precision podria requerirse un
IMU en el brazo o antebrazo adicional. En cuanto a evaluacién, la validacién de modelos

en dominadas tipicamente involucra comparar los resultados con anotaciones manuales o
sistemas de referencia. Por ejemplo, para la segmentacion en fases se mediria la diferencia
de tiempo (error en ms) con respecto a un video etiquetado (¢, detectd el modelo el inicio de
la repeticion al mismo tiempo que el humano?). Para la clasificacion de variantes, se
reportan métricas de precision por clase. En la regresion de angulos, se calculan errores
medios en grados respecto a un gonidmetro o video-analisis.

En caso de no encontrarse literatura dedicada exclusivamente a dominadas, es util
apoyarse en estudios de ejercicios de traccion similares. Por ejemplo, remos con barra
o jalones en polea implican patrones de traccién donde el torso se mueve menos pero los
brazos realizan flexion similar; la deteccion de repeticiones en esos ejercicios con IMU seria
analoga. Otro ejemplo son las dips o fondos, estudiados junto a dominadas y sentadillas en
sistemas de reconocimiento de ejercicio — la dinamica invertida (empujar hacia arriba en
lugar de tirar) produce sefales distintas, pero el enfoque de reconocimiento es semejante.
En resumen, aun si las dominadas no han sido investigadas tan ampliamente, los métodos
de IA desarrollados para actividades afines en entrenamiento de fuerza pueden
transferirse: usar sensores inerciales corporales, procesar sus sefales con algoritmos de
ML entrenados supervisadamente, y asi identificar automaticamente repeticiones, fases y
calidad de la ejecucion.

=>|[o Tg

= o
- = scenario
-

Model supporting the
correct implementation of
sport exercises

RCM
realization of protocol

C >
Data classification = New data
using CNN, CNN+PPB, processing
center

o

|
Collecting sport acivity data on the correct performance of the
exercise: squats, pull-ups and dips

2 W W

: Research unit (training room): 3 tags (radio connection),
l network of six anchors (ethernet cable)

=

Figura 1: Ejemplo de arquitectura para un sistema de analisis de ejercicios con IMUS.
Incluye un médulo de reconocimiento de actividad (ARM) basado en una CNN con bloque
de post-procesamiento (PPB) para segmentar el escenario de ejercicios, y un médulo de
conteo de repeticiones (RCM). En este caso se usaron 3 sensores inerciales colocados en
mano, pecho y pie del depotrtista, junto con anclajes de ultrawideband para
posicionamiento. El flujo va desde la adquisicion de datos durante ejercicios (sentadillas,
dominadas, dips) en un entorno controlado, el almacenamiento en base de datos, la
clasificacion de la actividad actual mediante la CNN, hasta el conteo de repeticiones
detectadas. Adaptado de Patalas-Maliszewska et al. (2023).

3. Preparacion de Datos

El éxito de los modelos IA/ML depende en gran medida de una buena preparacion de los
datos de entrenamiento, especialmente en biomecanica donde los sensores inerciales
generan datos de series temporales multivariadas. A continuacién se describen las mejores
practicas en esta etapa:

Estructuracion y etiquetado del dataset: Primero, se debe disefiar cémo recopilar
y organizar los datos de IMUs. Esto implica decidir la colocacion de sensores (€j. un
IMU en pecho para capturar movimiento del tronco en dominadas, o en muneca para
brazo), la frecuencia de muestreo (ej. 50-200 Hz suelen usarse para captura de
movimiento humano), y registrar simultdneamente una referencia si es posible
(video, marcadores, etc. para validar). Cada sesion de grabacién debe anotarse
cuidadosamente: por ejemplo, marcar en qué intervalos de tiempo se realizaron
dominadas y cuantas reps, o en qué instantes comenzd y termind cada repeticion
(estas etiquetas temporales son el ground truth para entrenamiento). Si se van a
clasificar variantes, cada repeticion se etiqueta con su categoria (“dominada
estricta”, “dominada kipping”, etc.). Es importante estructurar los datos en trazas
identificables (por sujeto, sesion, ejercicio) para luego facilitar la divisién en
entrenamiento y prueba sin mezclar indebidamente (ver evitaciéon de leakage abajo).
Preprocesamiento de las senales: Las salidas de los IMUs pueden contener ruido
y offset. Es habitual aplicar filtros o transformaciones antes de extraer caracteristicas
o alimentar un modelo:

o Filtrado: se puede aplicar un filtro pasa-bajos (e.g., 5-10 Hz) para eliminar
ruido de alta frecuencia que no corresponda al movimiento humano
voluntario, o un filtro pasa-altos suave para remover la componente
gravitatoria de la aceleracién si interesa resaltar solo aceleraciones
dinamicas. También se pueden usar filtros de mediana para eliminar picos
abruptos (artefactos).

o Calibracion: al inicio de la sesidn, conviene calibrar los sensores (p. €j., cero
de acelerémetros cuando estan quietos, alineacion de ejes con la gravedad).
También alinear los ejes del sensor con ejes anatémicos si es posible,
aunque muchas veces esto se aprende automaticamente.

o Normalizacién: es comun normalizar las sefiales para estandarizar la escala.
Por ejemplo, escalar cada canal de aceleracion a unidades “g” y cada canal
de giroscopio a °/s, y luego hacer una normalizacion estadistica (restar media
y dividir por desviacién estandar) para cada tipo de sefal. En el estudio de
Patalas-Maliszewska se prob6 usar datos brutos vs. datos normalizados y se
observé un ligero impacto en la precision — la normalizacién a veces mejora
la convergencia de los modelos ML.

o Segmentacion inicial: en lugar de alimentar toda la secuencia larga a un
modelo, se suele trocear la sefal en segmentos o ventanas de duracion fija
que luego seran clasificadas o analizadas individualmente (ver siguiente
punto). Antes de segmentar, puede ser util recortar porciones inutiles (por €j.,
periodos de descanso largos fuera de las repeticiones, a menos que se
quieran incluir como clase “no ejercicio”).

Extraccion de caracteristicas (features): Existen dos enfoques: uno basado en
caracteristicas manuales (feature engineering) y otro basado en aprendizaje
automatico de caracteristicas (p. ej. con redes profundas). En el primer enfoque,
para cada ventana de sefial se calculan una serie de descriptores numéricos que
capturan informacion relevante del movimiento:

o Caracteristicas temporales: estadisticas como media, desviacion estandar,
mediana, maximos y minimos de la aceleracion en cada eje durante la
ventana; namero de picos o cruces por cero (indicadores de repeticiones
dentro de la ventana); duracién de la fase positiva vs negativa; pendiente
maxima (derivada) indicando explosividad; etc. Por ejemplo, en un trabajo se
usaron caracteristicas como la cantidad y sincronizacion de picos,
coeficientes de un modelo autorregresivo, y medidas de simetria temporal de
la sefial, mostrando la diversidad de descriptores que pueden extraerse.

o Caracteristicas frecuenciales: transformando la sefial al dominio de la
frecuencia (mediante FFT o wavelets) se obtienen rasgos como energia en
ciertas bandas, frecuencia dominante, entropia espectral, etc. En el caso de
dominadas, podria ser util la energia en bajas frecuencias (<5 Hz) que
corresponderia al ritmo repetitivo de las reps.

o Caracteristicas cinematicas especificas: si se dispone de orientacién del IMU
(a través de quaterniones o angulos de Euler), se pueden derivar angulos
relativos (p. €j., angulo estimado de codo) o detectar posturas extremas.
También combinaciones de sensores — por ejemplo, diferencia de aceleracion
entre pecho y pierna para detectar balanceo.

Herramientas automatizadas como TSFresh pueden extraer miles de posibles
features de series temporales. De hecho, Moghadam et al. reportan haber generado
45,704 caracteristicas de sensores (IMU+EMG) para predecir cinematica,
reduciéndolas luego al subset mas informativo. En muchos casos es conveniente
aplicar reduccién de dimensionalidad (p. €j., técnicas de seleccién de
caracteristicas, analisis PCA) para evitar alimentar al modelo con datos redundantes
o irrelevantes, reduciendo asi el riesgo de sobreajuste y el costo computacional.

En el segundo enfoque (aprendizaje profundo), en vez de calcular manualmente los
features, se alimentan directamente las secuencias crudas o filtradas a una red
neuronal (p. ej. una CNN 1D) que automaticamente aprendera filtros optimizados
para extraer las caracteristicas mas discriminativas. Este enfoque end-to-end ha
ganado popularidad pues a menudo supera al desempefio de features manuales
tradicionales, siempre que haya suficientes datos para entrenar. Por ejemplo, una
CNN puede aprender un filtro que esencialmente detecte el patrén de aceleracion
caracteristico de una dominada completa, algo que manualmente hubiéramos
capturado con “numero de picos” y “amplitud”, pero la red lo aprende sola.
Segmentacion en ventanas moviles: Para alimentar al modelo de ML, es habitual
segmentar la sefial continua en ventanas deslizantes (sliding windows) de duracién
fija. La eleccion del tamafo de ventana es importante: debe ser lo suficientemente
larga para capturar la estructura completa del evento de interés (p. €j., al menos una
repeticion completa en ejercicios ciclicos) pero no tan larga que mezcle multiples
eventos o que diluya la informaciéon en mucho ruido. En reconocimiento de actividad
diaria con acelerémetros, tipicamente se usan ventanas de 2-5 segundos con un
solapamiento del 50%. En entrenamiento de fuerza, si nos centramos en detectar
repeticiones individuales, una ventana podria ser del tamafio aproximado de una

repeticién (~1-2 s dependiendo de la velocidad de ejecucién). Por ejemplo, para
dominadas (que suelen ejecutarse en ~1 s subida + 1 s bajada), una ventana de 2
segundos podria capturar una repeticion completa. Se puede usar un solapamiento
alto (p. ej. 50-75%) para no perder la transicion entre ventanas. El solapamiento
asegura que aunque la repeticion caiga justo en el borde de una ventana, sera
captada en otra ventana desplazada. En el estudio de Patalas-Maliszewska,
probaron ventanas solapadas vs no solapadas: con solapamiento lograron mejor
accuracy (0.92 vs 0.88) en la deteccion de actividad, evidenciando la utilidad de
ventanas moviles para captar suficiente contexto temporal.

Cada ventana recibe la etiqueta correspondiente segun la tarea: por ejemplo, si
estamos clasificando la actividad, una ventana durante una dominada se etiqueta
como “dominada”; si estamos detectando fases, cada ventana (o cada punto dentro
de la ventana) podria etiquetarse con la fase actual. Es importante evitar mezclar en
la misma ventana dos estados diferentes (por eso a veces se descartan ventanas
que contienen fronteras de repeticiones, o se usan técnicas como /abel smoothing
cuando hay transicion).

Balanceo de clases: En los datos recolectados, a menudo algunas clases estan
desbalanceadas. Por ejemplo, puede haber muchas mas ventanas de “no ejercicio”
o descanso que ventanas de “dominada” efectiva, o quizas dentro de dominadas, la
mayoria son con técnica correcta y muy pocas muestras de técnica incorrecta. El
desbalance puede sesgar al modelo a favorecer siempre la clase mayoritaria. Para
mitigar esto:

o Se pueden aplicar técnicas de sobremuestreo de la clase minoritaria, como
SMOTE (Synthetic Minority Over-sampling Technique), que genera muestras
sintéticas nuevas interpolando las existentes de la clase minoritaria, para
ampliar su representacion. Por ejemplo, si solo se tienen 5 repeticiones
etiquetadas como “incorrectas”, SMOTE podria crear varias mas variando
ligeramente las sefiales.

o Alternativamente, realizar submuestreo de la clase mayoritaria (descartar
aleatoriamente algunas muestras de la clase abundante) para balancear,
aunque esto desperdicia datos.

o Otra estrategia es usar pesos de clase en el algoritmo de entrenamiento:
penalizar mas los errores en la clase minoritaria que en la mayoritaria.
Muchos algoritmos (p. ej. SVM, redes neuronales) permiten introducir un
peso o factor de costo distinto por clase. Asi, el modelo se entrenara
esforzandose mas en acertar la clase minoritaria.

o Finalmente, es recomendable recolectar datos de forma que haya cierto
equilibrio; por ejemplo, en las sesiones de entrenamiento de modelos, inducir
voluntariamente algunos ejemplos de la clase minoritaria (p.ej., pedir a
algunos sujetos que hagan deliberadamente dominadas con técnica
incorrecta para tener mas muestras de ese caso).

Division de datos de entrenamiento/prueba y evitar data leakage: La correcta
separacion de los datos en conjuntos de entrenamiento, validacion y prueba es
crucial para evaluar el modelo justamente. Un error comun es el leakage (fuga de
informacion), que ocurre cuando datos utilizados para entrenar “se cuelan”
indirectamente en el conjunto de prueba, inflando artificialmente el desempeno. En
sefales temporales y datos de multiples sujetos, hay consideraciones especiales:

o

o

Si las repeticiones de un sujeto aparecen en entrenamiento, no se deberian
usar otras repeticiones del mismo sujeto en prueba, porque el modelo
podria simplemente haber aprendido patrones especificos de esa persona
(su ritmo, su forma) en vez de generalizar. Por ello, es preferible una
separacion por sujeto: por ejemplo, entrenar el modelo con datos de 8
participantes y reservar los datos de 2 participantes nunca vistos para probar
(Leave-One-Subject-Out, en iteracion). Esto evalla la capacidad de
generalizacion a individuos nuevos.

Similarmente, si se tienen multiples sesiones por sujeto en distintos dias, se
puede hacer separacién por sesiéon (de modo que el modelo pruebe en una
sesion distinta a las de entrenamiento, evitando que patrones de ruido o
calibracion especificos de una sesion se filtren).

Al usar ventanas solapadas, asegurarse de que ventanas que se traslapan
en el tiempo no queden repartidas entre entrenamiento y prueba. Por
ejemplo, si una repeticién genera 10 ventanas solapadas, todas ellas
deberian pertenecer al mismo grupo (entrenamiento o prueba), ya que
comparten mucha informacion. De lo contrario, el modelo podria ver parte de
una repeticién en entrenamiento y otra parte en prueba.

Nunca utilizar features calculadas globalmente mezclando datos de
entrenamiento y prueba. Por ejemplo, si se hace normalizacidn por z-score,
calcular la media y desviacion solo con datos de entrenamiento y aplicar esa
transformacion a los de prueba (y no recalcularla incluyendo prueba). Incluir
datos de prueba en la normalizacién es otro tipo de leakage.

Siguiendo estas practicas se asegura que el modelo entrenado sea evaluado en datos
verdaderamente independientes, reflejando su rendimiento real. En estudios recientes de
biomecanica, se insiste en pruebas robustas: Rivadulla et al. sugieren validaciones
cruzadas que involucren diferentes laboratorios para garantizar que los algoritmos no estén
sobreajustados a un equipamiento o configuracion especifica. De hecho, Dumphart et al.
mostraron que un detector de eventos de marcha entrenado en un laboratorio, al usarse en
otro con distinta frecuencia de muestreo, presentaba errores de hasta 10 ms en la deteccién
de eventos. Esto resalta la importancia de pruebas con datos verdaderamente nuevos y
posiblemente heterogéneos, para confirmar la generalizacién del modelo.

4. Entrenamiento y Validaciéon del Modelo

Una vez preparados los datos y definida la arquitectura de modelo IA/ML a utilizar, se
procede al entrenamiento y validacién. En este proceso se deben seguir practicas rigurosas
para obtener un modelo con buen rendimiento y evitar sobreajuste:

e Procedimientos de validaciéon cruzada: Dado que tipicamente el volumen de datos
en estudios biomecanicos no es masivo (decenas de sujetos, miles de repeticiones a
lo sumo), se aprovecha al maximo la informaciéon mediante validacién cruzada.
Existen distintas estrategias:

o

k-fold cross-validation: El dataset se divide en k subconjuntos (folds). Se
entrenan k modelos diferentes, cada vez usando k-7 folds como
entrenamiento y 1 fold distinto como validacion. Luego se promedian los
resultados. Un caso comun es 5-fold o 10-fold CV. Esto da una estimacion
mas robusta del rendimiento que una simple particion train/test unica.
Leave-One-Subject-Out (LOSO): Como mencionado antes, se itera
tomando los datos de un sujeto como conjunto de prueba y entrenando con
los de los demas. Esto es especialmente util para evaluar como el modelo
funciona en un individuo completamente nuevo. Si el modelo se va a aplicar
en personas no vistas, LOSO CV es un buen indicador. Muchas
investigaciones en HAR con wearables reportan resultados LOSO porque es
el escenario mas desafiante pero mas realista en términos de generalizacion.
Hold-out con validacién interna: A veces se reserva un conjunto de test fijo
(por ejemplo, 20% de los sujetos) y con el 80% restante se hace k-fold CV
para desarrollo/validacion. Esto permite afinar hiperparametros en la CV
interna y al final hacer una evaluacion final en el hold-out.

e Métricas de desempeno: Para evaluar clasificadores, no basta con la accuracy
global (porcentaje de aciertos). En problemas con multiples clases o clases
desequilibradas, se reportan métricas adicionales:

O

Precision (Precision): Proporcion de predicciones positivas que realmente
son positivas. En términos de matriz de confusion: Precision = TP /

(TP + FP). Una precision alta significa que cuando el modelo dice "esto es
una dominada correcta", pocas veces se equivoca.

Exhaustividad (Recall): Proporcion de positivos verdaderos que el modelo
logra encontrar. Recall = TP / (TP + FN). Un recall alto indica que
captura casi todas las ocurrencias reales de la clase. (En espafiol también se
le llama sensibilidad).

Puntuacion F1: Media arménica de Precisiony Recall: F1 = 2 * (Prec *
Rec) / (Prec + Rec). Es util para resumir el equilibrio entre ambos
(especialmente cuando una es mucho mas baja que la otra). Un F1 cercano
a 1 indica buen balance precisidon/exhaustividad.

Curva ROC y AUC: La curva ROC (Receiver Operating Characteristic) traza
la relacion entre la tasa de verdaderos positivos vs falsos positivos a
diferentes umbrales de decisién. El AUC (Area Under Curve) resume en un
numero el rendimiento: AUC = 1 seria perfecto, 0.5 equivalente al azar. Suele
usarse en clasificacién binaria. Por ejemplo, para detectar “buena técnica” vs

“mala técnica”, un AUC alto >0.9 indicaria que el modelo separa bien ambos
casos.

o MCC (Matthews Correlation Coefficient): Es una métrica que tiene en
cuenta TP, TN, FP, FN en un solo valor de -1 a 1. MCC=1 es prediccion
perfecta, 0 es aleatoria, -1 es opuesta a la realidad. Es especialmente
informativa con clases desbalanceadas, ya que la accuracy puede ser
engafosamente alta si el modelo solo acierta la clase mayoritaria. En
evaluacion de modelos de clasificacién de movimiento, un MCC alto asegura
que el modelo esta acertando en todas las categorias y no solo evitando
errores triviales.

o Otras: dependiendo del contexto, se puede reportar specificity
(especificidad), NPV (valor predictivo negativo), etc. En problemas de
deteccion de eventos se reportan tiempos de anticipacion o retraso
promedio (ej., “el evento de inicio de rep se detectdé con 50 ms de adelanto
respecto al valor real”). En regresién de angulos, se usan tipicamente el
error cuadratico medio (MSE) o el error absoluto medio (MAE) en grados.

Es importante presentar métricas para cada clase o una media balanceada,
especialmente si tenemos, por ejemplo, clase “sin repeticiones” vs “dominada”: un
modelo trivial que siempre diga “sin rep” podria tener 90% accuracy si efectivamente
el 90% del tiempo el sujeto esta en reposo, pero su recall de la clase “dominada”
seria 0 (lo cual seria inaceptable). Por ello, se suelen incluir matrices de confusion
completas y métricas por clase. En la literatura de analisis de entrenamiento de
fuerza, se han reportado clasificaciones de ~70-90% de accuracy segun el ejercicio y
modelo, pero enfatizando la necesidad de mirar mas alla de la cifra global y ver si
ciertos casos (p. ej. mala técnica) estan quedando desatendidos.

Regularizaciéon y prevencion de sobreajuste: Dado el relativamente bajo niumero
de muestras y la alta dimensionalidad de los datos sensor + posibles parametros de
un modelo profundo, existe riesgo de sobreajuste (overfitting) — es decir, que el
modelo aprenda detalles especificos del set de entrenamiento que no generalizan a
nuevos datos. Para evitarlo, se emplean varias técnicas:

o Regularizacién L2: Consiste en anadir un término de penalizacion en la
funcion de pérdida proporcional al cuadrado de los pesos (norma L2). Esto
fuerza a los pesos de la red a no crecer demasiado, manteniendo el modelo
mas simple (prefiere repartir los pesos en vez de depender de uno muy
grande). En regresion lineal y SVM es equivalente a ridge regression o
weight decay. La regularizacion L2 suele mejorar la capacidad de
generalizacion reduciendo sobreajuste.

o Dropout (Desconexion aleatoria): En redes neuronales, la técnica de
dropout apaga aleatoriamente un porcentaje de neuronas en cada iteracion
de entrenamiento. Por ejemplo, con 50% dropout en la capa oculta, cada vez
solo la mitad de las unidades estan activas. Esto previene que la red
dependa mucho de combinaciones especificas de neuronas, obligandola a
aprender representaciones redundantes y mas robustas. En la fase de
prueba no se aplica dropout pero los pesos estan “promediados”
implicitamente por haber entrenado asi. Dropout suele ser muy efectivo en
redes densas; en CNN también se usa a la salida de bloques
convolucionales.

o Early Stopping (Detenciéon temprana): Consiste en monitorear el
desempefio en un conjunto de validacion durante el entrenamiento e
interrumpir el entrenamiento cuando la métrica de validacién empeora
(indicando inicio de sobreajuste). Por ejemplo, entrenar por maximo 100
epochs pero detener si tras X epochs el error de validacidon comienza a subir.
Asi se evita sobre-entrenar el modelo en los datos de entrenamiento.

o Data augmentation: En vision por computador es muy comun; en sefales de
IMU también se puede implementar. Por ejemplo, afiadir pequenas
perturbaciones a las sefiales durante el entrenamiento: un ligero ruido, rotar
el eje de referencia, o simular variaciones del sujeto (como escalar
temporalmente la sefal para simular distinta velocidad de ejecucion). Esto
aumenta efectivamente el tamafo del dataset y hace el modelo mas inmune
a variaciones. Cuidar que las transformaciones tengan sentido biomecanico
(p. €j., invertir la sefal de tiempo no tendria sentido fisico, pero afiadir ruido
blanco de baja amplitud si).

o Simplificacién del modelo: A veces, reducir la complejidad del modelo
(menos capas o neuronas) regulariza de forma natural. Un modelo mas
pequeno tiene menos capacidad de sobreajuste. La seleccion de
hiperparametros (p. ej., profundidad de arbol, numero de arboles en un
Random Forest, nUmero de neuronas en una capa oculta) puede guiarse
mediante busqueda en la validacién para encontrar el minimo modelo que
logra buen desempefio.

Frameworks y herramientas: Para implementar estos modelos, existen numerosos
frameworks. Para algoritmos tradicionales (arboles, SVM, etc.) es muy popular
scikit-learn (Python), que ofrece implementacion eficiente de estos modelos y
utilidades para validacion cruzada y métricas. Para aprendizaje profundo, los
frameworks dominantes son TensorFlow (y su API Keras) y PyTorch. En el ambito
académico de biomecanica se utiliza bastante Python con estas librerias, ya que
facilitan construir prototipos de CNN/LSTM y entrenarlos en GPU. TensorFlow/Keras
brinda muchas funciones listas (capas CNN1D, optimizadores con regularizacion,
callbacks para early stopping, etc.) y PyTorch es muy flexible para personalizar
arquitecturas. Algunos estudios también usan MATLAB (que tiene una toolbox de ML
y deep learning) o incluso Weka/Orange para cosas mas simples. En tiempos
recientes, para despliegue en moviles o dispositivos, TensorFlow Lite y otras
variantes especializadas entran en juego (ver seccion siguiente). Un pipeline tipico
seria: extraer caracteristicas con Python + scikit-learn, entrenar un Random Forest; o
disefiar una red CNN-LSTM en Keras, entrenarla con GPU utilizando validacién
cruzada y varias épocas, y evaluar su matriz de confusion final sobre el set de
prueba.

En resumen, la etapa de entrenamiento y validacion exige rigor experimental: usar la
validacién cruzada apropiada, monitorear multiples métricas, aplicar regularizacién para
no sobreajustar, y documentar claramente los resultados. Lamentablemente, una revision
indicod que en varios sistemas automaticos para entrenamiento de fuerza publicados, habia
errores metodoldégicos y a menudo se pasaban por alto aspectos como la interpretabilidad
y generalizacion. Por eso, se recomienda seguir estandares de desarrollo y reportar no solo
altos porcentajes de acierto, sino proveer evidencias de que el modelo es robusto y
explicable en contexto deportivo.

5. Inferencia en Tiempo Real y Optimizacion para
Dispositivos Portables

Un aspecto clave de aplicar IA/ML en biomecanica deportiva es la posibilidad de llevar estos
algoritmos al campo de entrenamiento en tiempo real, utilizando dispositivos portéatiles
(wearables, méviles o microcontroladores embebidos). Esto requiere optimizar los modelos
para que sean lo suficientemente eficientes en cuanto a computacion, memoria y consumo
de energia, sin perder demasiada precision.

e Implementacién de la inferencia en tiempo real: La inferencia es el proceso de
usar el modelo ya entrenado para producir predicciones sobre datos nuevos. En un
escenario real-time con IMUs, implica que segun el sensor genera datos (por €j.,
streaming via Bluetooth de aceleraciones), el modelo procese inmediatamente cada
ventana de datos y emita un resultado (por ejemplo, “1 repeticién detectada” o
“técnica incorrecta”). Para lograr funcionamiento en vivo, el pipeline debe estar
disefiado con baja latencia:

1.

Se suelen utilizar ventanas deslizantes en streaming: a medida que llegan
muestras, se llena un buffer de tamafio N (duracion de la ventana) y cuando
esta completo se ejecuta la prediccion del modelo en ese buffer. Si se solapa,
puede que se calcule cada T milisegundos desplazando la ventana.

El tiempo de computo de la prediccion debe ser menor que el intervalo entre
ventanas para no acumular retraso. Por ejemplo, si cada 0.5 s se evalua una
nueva ventana, la inferencia debe tomar mucho menos de 0.5 s.

Se recomienda realizar pruebas de profiling: medir en el dispositivo objetivo
cuanto tarda calcular features (si aplica) y correr el modelo. A veces es
necesario recortar el modelo o simplificar features para cumplir restricciones
de tiempo real.

e Optimizaciéon y compresion de modelos: Los modelos entrenados en entornos de
PC pueden ser demasiado pesados para correr en un microcontrolador basico como
un Arduino. Existen técnicas de TinyML para reducir el tamafio y complejidad del
modelo:

1.

Cuantizaciéon de modelo: Consiste en reducir la precisién numérica de los
pesos y operaciones del modelo. Tipicamente, se convierten pesos de 32 bits
en coma flotante a enteros de 8 bits (o coma fija de 8 bits. Esto reduce el
tamafo del modelo a ~1/4 y suele aumentar la velocidad de inferencia (los
microcontroladores pueden manejar enteros mas rapido que floats, y ademas
se aprovecha mejor la caché). La cuantizacion bien hecha apenas degrada la
precision del modelo (a veces menos de 1% de disminucion en accuracy).
Por ejemplo, TensorFlow Lite permite cuantizar un modelo entrenado al
exportarlo, y la Edge TPU de Google utiliza cuantizacion para lograr alto
rendimiento con bajo consumo.

Pruning (Poda): Implica eliminar conexiones/pesos poco importantes en la
red neuronal, creando un modelo mas esparso. Se pueden forzar a cero
ciertos porcentajes de pesos (p. €j. eliminar un 30% de los pesos mas
cercanos a cero). La poda reduce la complejidad y tamafio del modelo, y si
se combina con algoritmos que aprovechan la esparsidad, también acelera la
inferencia. Idealmente, se realiza un entrenamiento con regularizacién L1 o

similar que incentive pesos cero, luego se prunan y se vuelve a afinar el
modelo. Esta técnica puede reducir significativamente el nimero de
operaciones sin gran pérdida de desempefio.

3. Distillation (destilacion): Es mas compleja, pero consiste en entrenar un
modelo pequefio (“estudiante”) para imitar las salidas de un modelo grande
(“profesor”) en el conjunto de entrenamiento. De este modo, se transfiere el
conocimiento a una arquitectura mas compacta. Esto no garantiza eficiencia
en microcontrolador, pero a veces logra modelos mucho mas pequefos con
desempefio cercano al original.

4. Optimizacion de arquitectura: A nivel de disefo, elegir un modelo mas
simple si es para dispositivo embebido. Por ejemplo, tal vez un modelo tipo
Random Forest con 50 arboles pequefios pueda correr en un ARM Cortex-M,
mientras que una LSTM grande no podria. O una CNN 1D con 1 0 2 capas
en vez de 5 capas profundas, etc. También se pueden optimizar las features
para reducir la entrada: en vez de alimentar 3 ejes de aceleracién y 3 de giro,
quizas solo 3 variables derivadas criticas.

Herramientas y frameworks especializados: La comunidad TinyML ha
desarrollado frameworks para facilitar la implementacion en dispositivos de bajos
recursos. TensorFlow Lite Micro es una version de TF Lite que funciona en
microcontroladores (sin sistema operativo, directamente en C/C++). Permite cargar
modelos (cuantizados generalmente) y ejecutarlos con muy poca RAM (del orden de
decenas de KB). Otras opciones incluyen CMSIS-NN (librerias optimizadas de redes
neuronales para ARM Cortex-M), o plataformas como Edge Impulse que ayudan a
entrenar e implementar modelos en diferentes placas (Arduino Nano 33 BLE Sense,
etc.). Un ejemplo de éxito es un modelo 1D-CNN de muy baja carga, capaz de
reconocer actividades humanas en un microcontrolador a 10 Hz. También la
literatura reporta experimentos reduciendo tasa de muestreo para ahorrar computo
con impacto minimo en accuracy.

Ejemplos de dispositivos: Un Arduino Nano 33 BLE Sense (Cortex-M4 a 64 MHz,
256 KB RAM) puede ejecutar modelos pequefios en tiempo real leyendo su propio
IMU. También la familia ESP32 (tiene potencia similar y conectividad Bluetooth/WiFi)
es popular en proyectos de wearable ML. Para demandas mayores, existen
microcontroladores con aceleradores dedicados, como la mencionada Edge TPU de
Google (pensada para inferencia de redes cuantizadas a altas velocidades con bajo
consumo) o chips como STM32H7 (dual core, uno de ellos DSP). No obstante, el
objetivo suele ser lograr que incluso la plataforma mas sencilla logre correr el
modelo — de ahi la importancia de la optimizacion.

Pipeline completo desde adquisiciéon hasta visualizacién: Integrar todo el flujo
requiere ingenieria de sistemas ademas del modelo ML:

1. Adquisicion: Los sensores IMU obtienen datos (aceleracion, giro)
continuamente. Esto puede recolectarse por un microcontrolador conectado
al sensor (ej., un Arduino con MPUG050) o por un smartphone con
acelerometro interno. Es comun que los datos se lean en interrupciones de
temporizador para asegurar periodicidad (p. €j., leer 100 muestras por
segundo).

2. Preprocesamiento local: El dispositivo puede filtrar o segmentar los datos
en tiempo real. Por ejemplo, un Arduino podria calcular la media removiendo
el offset, y mantener un buffer circular de muestras para la ventana actual.

3. Inferencia del modelo: Cada vez que se llena una ventana de datos (ej., 1s
de sefal), se normalizan usando parametros predefinidos y se computan las
features requeridas (si el modelo es clasico) o se alimentan directamente a la
red (si es un modelo neuronal). El modelo produce una prediccion: por
ejemplo, “clase = dominada” con cierta probabilidad, o “angulo de codo =
90°”.

4. Post-procesamiento: Puede aplicarse légica adicional, p.e€j., un bloque de
post-proceso (PPB) como en Patalas-Maliszewska et al. para suavizar las
predicciones. Esto podria ser un filtro de mediana sobre las ultimas N
clasificaciones para evitar parpadeos entre clases. También conteo: si la
clase “dominada” es continua por mas de X instantes y luego cambia a “no
dominada”, contar una repeticion.

5. Feedback/Visualizacién: Finalmente, el sistema proporciona el resultado al
usuario. En un movil, puede ser una pantalla mostrando el conteo y tal vez un
mensaje (“Técnica OK” o “Extiende mas los brazos!”). En un
microcontrolador, podria encender un LED o emitir un beep cada rep, o
transmitir via Bluetooth a otra interfaz. Por ejemplo, un prototipo wearable
podria vibrar cuando detecta que la barbilla pasé la barra, para indicar éxito
de la repeticion.

e La latencia total desde que ocurre el evento hasta que se notifica debe ser corta.
Para repeticiones de ejercicio, una latencia de ~0.1-0.2 s es generalmente tolerable
(imperceptible para el usuario), pero mas de medio segundo podria sentirse
retrasado. En algunas aplicaciones criticas (p. €j. asistencia robdética), se requeriria
latencias aun menores, pero para conteo de repeticiones un ligero retraso no es
problematico.

En conclusion, lograr inferencia en tiempo real implica adaptar el modelo al hardware.
Gracias a técnicas como cuantizacion y pruning, hoy es posible ejecutar redes neuronales
simples en microcontroladores de muy bajos recursos. Esto abre la puerta a entrenadores
personales portatiles: por ejemplo, unas bandas con IMU en brazos que cuentan dominadas
y evallan la técnica localmente sin necesidad de conexién a un PC. Aun asi, siempre hay
que verificar que la precision del modelo no se degrade demasiado tras la compresién. Si un
modelo resultara muy poco preciso al cuantizarlo, quizas la solucion es optar por un modelo
mas simple desde el inicio (menos sensible a cuantizacion) o utilizar un dispositivo
ligeramente mas potente (p.ej., un smartphone) como apoyo.

6. Explicabilidad, Trazabilidad y Etica

Al introducir IA en el analisis deportivo, no solo importa la precisién, sino también entender
las decisiones del modelo, garantizar la trazabilidad de resultados y cumplir con
consideraciones éticas y legales. Este apartado cubre como abordar la “caja negra” de
algunos modelos, validar su confianza, adaptarlos con el tiempo y respetar la privacidad de
los datos:

Explicabilidad del modelo: Las decisiones tomadas por un sistema de ML — por
ejemplo, clasificar una repeticién como incorrecta — deben poder explicarse de forma
comprensible para generar confianza en usuarios y profesionales. Para modelos
simples como arboles de decision o reglas, la interpretacion es directa (se pueden
inspeccionar las reglas: ej. “Si el rango de movimiento < X, marcar rep como
incompleta”). Sin embargo, para modelos complejos (p. €j. una red neural profunda
que clasifica técnica), es necesario aplicar métodos de XAl (eXplainable Al):

o

Importancia de caracteristicas: En modelos tipo Random Forest o
XGBoost, se puede calcular la importancia de cada feature en la prediccién
(basado en la reduccion de impureza que genera en promedio). Esto
indicaria, por ejemplo, que la “amplitud de aceleracion vertical” es el atributo
mas influyente para detectar repeticiones. Ese conocimiento podria alinearse
con la intuicién del entrenador, validando el modelo.

SHAP (SHapley Additive exPlanations): Es una técnica moderna que
asigna a cada caracteristica un valor de contribucion a una prediccion,
fundamentado en teoria de juegos. Genera un vector de “importancias” para
una instancia especifica, que suman hasta la diferencia de la prediccion con
el promedio. Aplicado a una sefial de dominada, SHAP podria mostrar que,
para una repeticiones dada, las caracteristicas derivadas del eje Z del
acelerémetro tuvieron valores SHAP altos (indicando que gracias a ellas el
modelo decidioé que fue una dominada correcta) mientras que, por ejemplo,
una duracion corta tuvo un valor SHAP negativo (influyendo a clasificarla
como incorrecta). Tales interpretaciones locales ayudan a explicar cada
decision del modelo.

LIME (Local Interpretable Model-Agnostic Explanations): Similar
propésito que SHAP, LIME construye un modelo lineal simple alrededor de la
vecindad de la instancia a explicar. En nuestro contexto, podria crear una
regresion lineal usando ligeras variaciones de la sefial original para ver qué
features inclina la decision hacia “correcto” vs “incorrecto”. Por ejemplo,
descubrir que si se reduce artificialmente la amplitud de aceleracion, la
prediccion cambia a “incorrecto” sugiere que la amplitud original era clave
para “correcto”.

Visualizacion temporal: Para datos temporales, existen métodos como
relevancia temporal que pueden resaltar qué partes de la secuencia
influyeron mas. Si usaramos una red con mecanismo de atencién para
segmentar fases, las “weights” de atencién podrian visualizarse para ver
en qué momento la red detecté el fin de la repeticion.

El objetivo de explicabilidad es doble: por un lado, verificar que el modelo esta
aprendiendo algo coherente (no un artefacto espurio). Por ejemplo, si

inexplicablemente el modelo decide con una sefial de la pierna algo sobre la
dominada de brazos, quiza esté sobreajustando ruido o detectando un patrén
casual. Por otro lado, proveer retroalimentaciéon entendible al atleta o entrenador:
un sistema explicable podria decir “Repeticiéon 5 no conté porque tu angulo de codo
solo llegé a 100° (menos del umbral)” en vez de solo no contarla sin explicacion.
Esto facilita la aceptacion de la tecnologia en el entrenamiento.

Trazabilidad de resultados: La trazabilidad se refiere a poder rastrear el origen de
cada decision y los datos involucrados. En un proyecto de biomecanica con IA, esto
significa:

o Mantener un log detallado durante la inferencia: por ejemplo, guardar los
tiempos en que se detectaron repeticiones, los valores de las variables clave,
etc. Asi, si surge una duda (“4,ocurrié realmente 10 reps o el sistema conto
mal?”), se puede revisar el registro.

o Versionado de datos y modelos: Es importante llevar control de qué version
del modelo se usé en qué momento y con qué conjunto de entrenamiento. Si
posteriormente se detecta un bug o se mejora el modelo, se puede comparar
con la version anterior. También, si un resultado parece anémalo, se puede
replicar la inferencia offline con los mismos datos guardados para investigar.

o Referenciabilidad a datos brutos: Siempre se recomienda guardar (al menos
temporalmente) las senales originales o un resumen de ellas que llevé a
una decisién. Esto es critico en entornos donde las decisiones tienen
implicaciones fuertes (p.ej., en rehabilitacion, si un algoritmo sugiere un nivel
de progreso y se basa una terapia en ello, conviene poder demostrar en qué
datos se baso).

o Calibracién con sistemas de referencia: Para asegurar la trazabilidad
metrolégica, se suelen comparar las medidas de tiempo o angulos del
sistema |A contra un estandar. Por ejemplo, validar las detecciones de fase
contra un sistema de fotogrametria: si la IA marca el pico de dominada con
30 ms de diferencia respecto al video, se documenta esa diferencia. Con este
proceso de validacion cruzada, se traza la correspondencia entre medidas
de nuestro sistema y las reales, estableciendo margenes de error conocidos.
Estudios de eventos en marcha mencionan errores aceptables del orden de
10-20 ms en detectar contactos; en dominadas, diferencias de pocos
centimetros en la altura final podrian traducirse en decenas de milisegundos
de diferencia en deteccion, lo cual seguramente es tolerable. Lo importante
es cuantificarlo y trazarlo.

Actualizaciéon y deriva de concepto: Los modelos de ML pueden degradar su
desempefio si las condiciones cambian respecto al entrenamiento inicial, fendmeno
conocido como concept drift. En el contexto deportivo, pueden ocurrir cambios
graduales o subitos:

o El atleta podria cambiar su técnica con el tiempo (por ejemplo, mejora su
rango de movimiento, o adopta un estilo diferente). Un modelo entrenado con
sus datos antiguos podria empezar a fallar en clasificar correctamente.

o Si el dispositivo se usa con poblaciones diferentes a las entrenadas
(digamos, se entrend con deportistas jovenes y ahora se usa con adultos
mayores que hacen dominadas asistidas), el patrén de sefal puede diferir.

o Actualizaciones o cambios de los sensores (diferente modelo de IMU, distinta
frecuencia) también pueden introducir drift.

Para enfrentar esto, se deben planear re-entrenamientos periédicos o
calibraciones: por ejemplo, cada cierto numero de sesiones, recopilar nuevos datos
del usuario y volver a entrenar el modelo incluyendo esos ejemplos. Si el dispositivo
esta en campo, podria usarse aprendizaje en linea o incremental; pero en muchos
casos practicos, se opta por recopilar datos de uso, enviarlos a un servidor para
mejorar el modelo central y luego actualizar el firmware del dispositivo con el modelo
mejorado (esto es comun en dispositivos comerciales: las actualizaciones de
software traen modelos refinados). Es importante alertar al usuario cuando el modelo
se ha actualizado, especialmente si ello cambia la forma en que se interpretan sus
métricas (por trazabilidad y honestidad cientifica).

También conviene disefiar el sistema para detectar drift. monitorear si la distribucién
de las caracteristicas en uso se esta alejando de las del conjunto de entrenamiento
original. Si se detecta, senalar la necesidad de recalibrar. Por ejemplo, si de pronto
las aceleraciones promedio en dominadas de un usuario son mucho mayores que
cualquiera del set de entrenamiento (quiza porque ahora afnade lastre de peso), el
sistema podria advertir “nuevo régimen detectado, se recomienda recalibrar el
modelo con estos datos”.

Consideraciones legales y de privacidad (GDPR, anonimizacién, model cards):
El uso de sensores corporales y ML implica manejar datos personales, por lo que
se deben seguir normativas de proteccion de datos:

o Privacidad y GDPR: En la Unién Europea rige el RGPD (Reglamento
General de Proteccion de Datos). Los datos de un wearable deportivo
(acelerometria) aunque no identifiquen directamente a la persona, podrian
considerarse datos personales de salud si revelan informacion sobre su
condicion fisica. Por tanto, se debe obtener consentimiento informado del
usuario para recolectar y procesar sus datos con fines de analisis. Ademas,
se debe informar qué se hace con esos datos, garantizar su seguridad
(almacenamiento cifrado, transmision segura) y permitir que el usuario los
elimine si asi lo desea. Un punto importante es la anonimizacién: para
investigacion o para mejorar modelos, los datos deben anonimizarse, es
decir, desvincularse de la identidad del sujeto. Por ejemplo, en un dataset
utilizado para re-entrenar el modelo global, no deberia haber nombres ni
identificadores personales; cada registro puede ser un cédigo aleatorio.
Incluso asi, se debe evaluar que no haya riesgo de reidentificacion (la
acelerometria por si sola dificiimente identifica a alguien, pero combinada
con otros datos podria).

o Uso adecuado de los datos y sesgos: Eticamente, hay que asegurar que el
modelo no introduzca discriminaciones indebidas. En biomecanica
deportiva, esto podria significar verificar que el modelo funcione igual de bien
para hombres y mujeres, o para diferentes rangos de altura corporal, etc., si
esos factores no estan directamente incluidos. Si se descubre que el modelo
tiene mayor error en, digamos, personas con movilidad limitada, habria que
abordar ese sesgo incluyendo mas datos de ese grupo o ajustando el
algoritmo.

o Transparencia — Model Cards: Mitchell et al. (2019) propusieron las “Model
Cards” como documentacién estandarizada para modelos de ML. En
contexto de nuestro proyecto, seria muy util crear una ficha técnica del
modelo que describa: qué datos de entrenamiento se usaron (niUmero de

sujetos, variedad), qué métricas de desempefio tiene (globales y por
subgrupo, por ejemplo por sexo o nivel deportivo), para qué contexto esta
diseiado (p. ej., “modelo valido solo para dominadas con agarre pronado,
rango de movimiento completo”), y advertencias de limitaciones. Esto ayuda
a gestionar expectativas y responsabilidad: el usuario sabra en qué
condiciones el modelo es fiable. Si el sistema se comercializa, incluir algo
equivalente a “Este modelo fue validado con atletas recreativos de 18-40
afnos; no ha sido probado en nifios 0 poblaciones mayores” serviria para
evitar un uso indebido o al menos para que el usuario entienda los riesgos.

o Seguridad y responsabilidad: Aunque no es estrictamente legal,
éticamente se debe considerar la seguridad del usuario. Un modelo que da
feedback errado podria inducir a sobreesfuerzo o técnica incorrecta
persistente. Por ello, se podria incluir en las model cards o documentacion
una recomendacion de siempre combinar el feedback automatico con la
supervision de un entrenador, al menos inicialmente, y de no usar el sistema
como Unica base para decisiones criticas (principio de responsabilidad
humana). En Europa, los sistemas de decision automatica con impacto
significativo requieren posibilidad de revisién humana. En deporte, el impacto
no es legalmente critico, pero si podria afectar la salud del atleta. Asi que
mantener un humano en el bucle (gj. el entrenador revisa los resimenes y
valida) es deseable.

En resumen, incorporar IA en el analisis de dominadas va mas alla de lograr buenos
numeros de prediccion. Se deben explicar las razones (usando métodos como SHAP para
ver la contribucion de las sefales a cada decisién), mantener la trazabilidad de cada
resultado (registros, comparaciones con referencias de laboratorio en milisegundos para
estar seguros de la precision) y actualizar el sistema conforme evoluciona el usuario o se
detecten desvios. Todo esto, mientras se respetan la privacidad de los datos del deportista
y se comunica abiertamente el alcance y limitaciones del modelo mediante documentacién
transparente (al estilo model cards). Estas practicas garantizan que la solucién IA/ML sea
confiable, ética y sostenible en el tiempo, generando confianza tanto en los atletas como
en los profesionales que los entrenan.

Glosario de Términos Técnicos

¢ Inteligencia Atrtificial (IA): Area de la computacién que busca crear sistemas
capaces de realizar tareas que normalmente requieren inteligencia humana. Incluye
muchos subcampos, desde planificacion y razonamiento hasta percepcion. EI ML y
DL son sub-disciplinas de la IA.

e Aprendizaje Automatico (Machine Learning, ML): Conjunto de técnicas dentro de
la IA que permiten a un sistema aprender patrones a partir de datos, en lugar de ser
programado explicitamente con reglas fijas. Incluye algoritmos supervisados, no
supervisados y por refuerzo. En biomecanica se usa para reconocer actividades,
predecir valores biomecanicos, etc.

e Aprendizaje Profundo (Deep Learning, DL): Subcampo de ML que utiliza redes
neuronales artificiales con multiples capas (profundas) para modelar datos
complejos. Puede descubrir automaticamente representaciones de alto nivel en los
datos. Ejemplo: una red profunda puede aprender caracteristicas de la sefal de un
IMU que correspondan a patrones de movimiento, sin intervencién humana.

e Sensor Inercial (IMU): Dispositivo que combina usualmente un acelerémetro (mide
aceleracion lineal en 3 ejes) y un giroscopio (mide velocidad angular en 3 ejes), a
veces también un magnetémetro (campo magnético, usado para orientacion
absoluta). Proporciona mediciones de movimiento del cuerpo donde esté colocado.
Son pequefios y se usan como wearables para captar la cinematica humana.

e CRISP-ML: Adaptacion del estandar CRISP-DM (Cross-Industry Standard Process
for Data Mining) al ciclo de vida de proyectos de Machine Learning. Consta de fases:
1) Entendimiento del negocio/problema, 2) Entendimiento de los datos, 3)
Preparacion de los datos, 4) Modelado, 5) Evaluacion, 6) Despliegue. Es iterativo y
... Es iterativo y adaptado a los proyectos de ML, asegurando retroalimentacién
constante y control de calidad en cada fase.

e HAR (Human Activity Recognition): Reconocimiento automatico de actividades
humanas. En espanol a veces Reconocimiento de Actividad Humana. Consiste en
clasificar qué accion realiza una persona (caminar, correr, saltar, etc.) a partir de
sensores. En biomecanica deportiva, HAR abarca distinguir diferentes ejercicios o
fases de un movimiento mediante datos de IMUs, videos, etc.

e Sobreajuste (Overfitting): Ocurre cuando un modelo aprende demasiado los
detalles o ruido del conjunto de entrenamiento y pierde capacidad de generalizar a
nuevos datos. Un signo de sobreajuste es rendimiento casi perfecto en
entrenamiento pero pobre en validacion. Se combate con regularizacion, mas datos,
0 modelos mas simples.

e Regularizacion: Conjunto de técnicas para impedir el sobreajuste penalizando la
complejidad del modelo. Por ejemplo, la regularizaciéon L2 agrega un término que
fuerza a que los pesos de un modelo sean lo mas pequenos posibles, simplificando
la solucion. Otra forma es regularizaciéon por abandono (dropout), que
aleatoriamente desconecta neuronas durante el entrenamiento para que la red no
dependa de combinaciones especificas de caracteristicas.

e Dropout: Técnica de regularizacion en redes neuronales donde se “apagan”
aleatoriamente un porcentaje de neuronas en cada iteracién de entrenamiento. Esto
obliga a la red a ser mas robusta, ya que no puede confiar en una ruta especifica
para hacer una prediccién. En validacion/prueba, todas las neuronas estan activas

pero el efecto es equivalente a promediar muchos sub-modelos, reduciendo el
sobreajuste.
e Métricas de clasificacion:

o Accuracy (Exactitud): Fraccion de predicciones correctas sobre el total. Util
como indicador global, pero puede ser engafiosa si las clases estan
desbalanceadas.

o Precision (Precision): Porcentaje de instancias predichas como positivas
que realmente lo son (TP/(TP+FP)). Alta precisién significa pocas alarmas
falsas.

o Exhaustividad o Recall: Porcentaje de instancias positivas reales que el
modelo logra identificar (TP/(TP+FN)). Alto recall significa pocos falsos
negativos (no se le escapan muchos positivos verdaderos).

o F1-Score: Media arménica de precision y recall, util para resumir ambas en
un solo valor.

o AUC-ROC: Area bajo la curva ROC, mide la capacidad de separabilidad de
clases del modelo en diferentes umbrales (1.0 es perfecta, 0.5 es aleatoria).

o MCC (Matthews Correlation Coefficient): Métrica entre -1 y 1 que
considera verdaderos y falsos de ambas clases; es informativa aun con
clases desequilibradas (1 es perfecto, 0 aleatorio, -1 totalmente erréneo).

e Algoritmos y modelos comunes:

o Arbol de decisiéon: Modelo de clasificacién/regresion basado en reglas
if-then anidadas en forma de arbol. Facil de interpretar pero puede
sobreajustar si es muy profundo.

o Random Forest (Bosque aleatorio): Ensamble de muchos arboles de
decision entrenados sobre distintas muestras; suele mejorar generalizacion y
manejar bien datos tabulares.

o SVM (Support Vector Machine): Clasificador que encuentra el hiperplano
que mejor separa las clases en el espacio de caracteristicas, utilizando
kernels para casos no lineales. Eficaz en conjuntos de tamafio moderado y
alta dimensién, aunque menos usado hoy en dia frente a redes neuronales
para grandes datasets.

o Red Neuronal Convolucional (CNN): Tipo de red profunda especializada en
extraer caracteristicas espaciales o temporales usando filtros
(convoluciones). En senales de tiempo, las CNN 1D pueden captar patrones
locales (ej. un pico de aceleracién). Han demostrado alto rendimiento en
reconocimiento de patrones complejos.

o Red Neuronal Recurrente (RNN): Red disefiada para secuencias, que
mantiene estados internos para recordar informacion previa. Las variantes
modernas como LSTM (Long Short-Term Memory) o GRU solucionan
problemas de memoria a largo plazo en secuencias. Se usan para modelar
dependencias temporales largas (p. €j., en series de IMU para captar
dinamica en el tiempo).

o Transformer: Arquitectura de red basada en mecanismos de atencién en
lugar de recurrencia. Permite capturar relaciones de largo alcance en
secuencias de forma eficiente. En HAR empieza a usarse para secuencias
largas de sensores, aunque es mas comun en NLP y vision.

e Cuantizacién (Quantization): Proceso de reducir la precision numérica de un
modelo, por ejemplo pasar de pesos en coma flotante de 32 bits a enteros de 8 bits.

Esto comprime el modelo (menos memoria) y puede acelerar la inferencia en
hardware sencillo sin unidad de coma flotante, con minima pérdida de precisién si se
hace correctamente.

Poda de modelo (Pruning): Técnica de compresion donde se eliminan (ponen a
cero) pesos o0 neuronas poco relevantes de la red neuronal. El modelo resultante es
mas ligero y rapido, manteniendo casi el mismo rendimiento si la poda se hace sobre
componentes realmente “irrelevantes”. Puede realizarse iterativamente con
re-entrenamiento para recuperar desempeno.

SHAP: Acronimo de SHapley Additive exPlanations. Método post-hoc de
explicabilidad que atribuye a cada caracteristica un valor que representa su
contribucion a la prediccion de un modelo para una instancia dada. Se basa en la
idea de los valores de Shapley de la teoria de juegos. Util para explicar por qué el
modelo tomo cierta decision (p. €j., “esta variacion en aceleracion sumé +0.2 a la
probabilidad de ser dominada correcta”) de manera consistente y localmente
precisa.

LIME: Local Interpretable Model-Agnostic Explanations. Otro método de XAl que
genera explicaciones locales ajustando un modelo interpretable (lineal o arbol corto)
en la vecindad de la prediccion a explicar. Ayuda a aproximar qué caracteristicas
impulsaron la decisién en esa region del espacio de datos.

Model Card (Tarjeta de modelo): Documento estandarizado que acompafa a un
modelo de ML, describiendo sus caracteristicas de rendimiento, datos de
entrenamiento, alcance previsto y limitaciones conocidas. Propuesto para fomentar
la transparencia, especialmente en modelos usados por publicos no expertos. Una
model card para nuestro modelo de dominadas incluiria, por ejemplo: “Entrenado
con 1000 reps de 20 individuos (15H/5M), preciso 95% en conteo de repeticiones,
probado en edades 20-40; no validado para dominadas asistidas; puede fallar si el
sensor se mueve del pecho.”

RGPD (GDPR): Reglamento General de Proteccion de Datos de la UE (en inglés
General Data Protection Regulation). Ley de privacidad que establece directrices
sobre recoleccion, procesamiento y almacenamiento de datos personales. Requiere,
entre otros, consentimiento explicito del usuario, minimizacion y anonimizacion de
datos, derecho al olvido (el usuario puede solicitar borrar sus datos), y transparencia
en el uso. En nuestro contexto, implica tratar los datos biométricos (acelerometria,
etc.) como informacion sensible, garantizar que no se usen fuera del propdsito
acordado (p. €j., entrenamiento personal) y protegerlos de accesos no autorizados.
Deriva de concepto (Concept drift): Fenomeno donde la relacion estadistica entre
las caracteristicas de entrada y la salida objetivo cambia con el tiempo. El modelo
“aprendido” se vuelve menos valido porque el proceso subyacente evoluciond. En
biomecanica, esto puede suceder si el atleta modifica su técnica o condicion fisica, o
si se usa el modelo en un contexto diferente al original. Requiere recalibrar o
reentrenar periédicamente el modelo para mantener la precision.

Referencias y Lecturas Recomendadas

Patalas-Maliszewska, J., Pajak, |., Krutz, P., Pajak, G., Rehm, M., Schlegel, H., &
Dix, M. (2023). Inertial Sensor-Based Sport Activity Advisory System Using
Machine Learning Algorithms. Sensors, 23(3), 1137.
https://doi.org/10.3390/s23031137

Hart, R., Smith, H., & Zhang, Y. (2021). Systematic review of automatic
assessment systems for resistance-training movement performance: A data
science perspective. Computers in Biology and Medicine, 137, 104779.
https://doi.org/10.1016/j.compbiomed.2021.104779

Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep
learning for sport-specific movement recognition: a systematic review of
model development and performance. Journal of Sports Sciences, 37(5),
568—600. https://doi.org/10.1080/02640414.2018.1521769

Jeong, P., Choe, M., Kim, N., Park, J., & Chung, J. (2019). Physical workout
classification using wrist accelerometer data by deep convolutional neural
networks. |[EEE Access, 7, 182406—182414.
https://doi.org/10.1109/ACCESS.2019.2960088

Mohammadi Moghadam, S., Yeung, T., & Choisne, J. (2023). A comparison of
machine learning models’ accuracy in predicting lower-limb joints’ kinematics,
kinetics, and muscle forces from wearable sensors.Scientific Reports, 13(1),
5046. https://doi.org/10.1038/s41598-023-31906-z

Dindorf, C., Horst, F., SlijepCevi¢, D., Dumphart, B., Dully, J., Zeppelzauer, M.,
Horsak, B., & Frohlich, M. (2025). Machine Learning in Biomechanics: Key
Applications and Limitations in Walking, Running, and Sports Movements. En
M. J. Blondin, I. Fister Jr., & P. M. Pardalos (Eds.), Artificial Intelligence, Optimization,
and Data Sciences in Sports. Springer, Cham.
https://doi.org/10.1007/978-3-031-76047-1_4

Liang, W., Wang, F., Fan, A., Zhao, W., Yao, W., & Yang, P. (2023). Extended
application of inertial measurement units in biomechanics: from activity
recognition to force estimation. Sensors, 23(9), 4229.
https://doi.org/10.3390/s23094229

Warden, P., & Situnayake, D. (2019). TinyML: Machine Learning with TensorFlow
Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly Media.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., et al.
(2019). Model Cards for Model Reporting. En Proceedings of the Conference on
Fairness, Accountability, and Transparency (FAT 19)* (pp. 220-229). ACM.
https://doi.org/10.1145/3287560.3287596

	Implementación de IA/ML con Sensores Inerciales para Análisis de Dominadas en Biomecánica Deportiva
	
	1. Marco Teórico General
	
	2. Aplicación Específica en Dominadas
	
	3. Preparación de Datos
	
	4. Entrenamiento y Validación del Modelo
	
	6. Explicabilidad, Trazabilidad y Ética
	
	Glosario de Términos Técnicos
	
	Referencias y Lecturas Recomendadas

