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Metodología de 
Investigación en 
Biomecánica Deportiva1



Glosario de términos técnicos 

•Captura de movimiento optoelectrónica: sistema de medición del movimiento que utiliza cámaras (normalmente infrarrojas) y marcadores 
reflectantes colocados en el cuerpo. Las cámaras detectan la posición 3D de cada marcador en cada instante, permitiendo reconstruir la 
posición y ángulos de las partes del cuerpo con alta precisión. Es considerado un “estándar de oro” en biomecánica por su exactitud. 

•Fiabilidad (confiabilidad): grado en el que una medición o un procedimiento produce resultados consistentes al repetirse en condiciones 
similares. Una prueba altamente fiable dará valores casi iguales si se repite pronto sin cambios reales en el sujeto. Se cuantifica con 
estadísticas como el coeficiente de correlación intraclase (ICC) o el error típico (desviación estándar de las diferencias entre mediciones 
repetidas). 

•IMU (Unidad de Medida Inercial): dispositivo electrónico que combina típicamente un acelerómetro (mide aceleraciones lineales), un 
giroscopio (mide velocidades de rotación) y a veces un magnetómetro (mide el campo magnético) para estimar movimientos y orientación en 
3D. Del inglés Inertial Measurement Unit. Son pequeños sensores portátiles utilizados en smartphones, drones y wearables deportivos para 
registrar el movimiento del cuerpo sin necesidad de cámaras externas. Varios IMUs colocados en segmentos corporales pueden usarse 
juntos para obtener la postura completa de una persona en movimiento mediante algoritmos de fusión sensorial. 

•Independent variable / Dependent variable (Variable independiente / dependiente): en un experimento, la variable independiente es la 
que el investigador manipula o clasifica (p. ej., aplicar un tipo de entrenamiento, o comparar hombres vs. mujeres), mientras que la variable 
dependiente es el resultado medido que puede cambiar en respuesta (p. ej., la mejora en la técnica, el ángulo alcanzado, etc.). La 
dependiente “depende” de la independiente. Controlar la independiente (por ejemplo, quién entrena cómo) y observar cambios en la 
dependiente permite probar hipótesis causales. 

•Operacionalizar: proceso de definir cómo se medirá un concepto abstracto en la práctica. Implica decidir los indicadores o variables 
observables que representarán ese concepto. Por ejemplo, operacionalizar “habilidad técnica” podría hacerse a través de ciertas métricas 
biomecánicas (precisión angular, estabilidad, etc.). Es un paso clave para convertir una idea en datos medibles. 

•Validez: grado en que algo mide o refleja realmente lo que se pretende. Hay varios tipos: 
•Validez de medición: si un instrumento o método mide correctamente el valor verdadero (ej. una báscula válida da el peso real, un 
sensor válido da la aceleración real). Involucra exactitud y poca sesgo. 

•Validez interna: si un estudio está bien diseñado de forma que permite atribuir los resultados a las causas investigadas, sin interferencia 
de factores externos no controlados. 

•Validez externa: si los resultados de un estudio son generalizables a otras poblaciones, contextos o situaciones fuera del experimento. 
•Validez de constructo: si las variables medidas reflejan adecuadamente el fenómeno teórico de interés (ej. que un “índice de calidad de 
movimiento” realmente represente la calidad técnica). 

•Validez de contenido: si se han incluido todos los aspectos relevantes del concepto al medirlo (ej. para habilidad técnica en un deporte, 
considerar habilidad de pies, tronco y manos, no solo un aspecto).



•Velocidad propulsiva media (MPV): promedio de la velocidad durante la fase concéntrica (de empuje o tracción) de un movimiento, 
generalmente referido al levantamiento de pesas o ejercicios de fuerza. En el contexto de dominadas, podría adaptarse a la velocidad media 
de elevación del cuerpo en la subida. Es una métrica utilizada para cuantificar intensidad de esfuerzo; en halterofilia y entrenamiento de 
fuerza se usa mucho, por ejemplo, la MPV de un press de banca. Se mide en m/s. Una MPV más alta suele indicar un movimiento explosivo o 
poderoso, mientras que decrementos en MPV a través de repeticiones indican fatiga. 

•Coeficiente de correlación intraclase (ICC): estadístico que evalúa cuánto concuerdan medidas del mismo sujeto bajo condiciones 
repetidas. Muy usado para la fiabilidad. Un ICC = 1.0 significa concordancia perfecta, 0 significa concordancia nula (solo variación aleatoria). 
Se interpreta comúnmente: <0.5 pobre, 0.5-0.75 moderada, 0.75-0.9 buena, >0.9 excelente fiabilidad (aunque rangos varían según autores). 
Se llama “intraclase” porque compara la variabilidad dentro del sujeto vs. entre sujetos; a diferencia de correlaciones de Pearson, considera 
también las diferencias en nivel medio. 

•Typical error / Error típico de medida: desviación estándar de las diferencias entre mediciones repetidas en la misma condición​. 
Representa el “ruido” aleatorio inherente a la medición. Se suele expresar también como coeficiente de variación (CV%) dividiendo ese error 
típico por el valor medio de la medición. Un error típico bajo implica que un solo valor medido está muy cerca del valor “verdadero” del 
individuo en esa condición. 

•Bland-Altman (gráfico o límites): método para evaluar acuerdo entre dos técnicas de medición, plotteando la diferencia entre métodos (o 
entre test y retest) contra su promedio. Proporciona “límites de acuerdo” que son la media de las diferencias ± 1.96 desviaciones estándar. Si 
estos límites son estrechos y cerca de cero, las mediciones concuerdan bien. Es útil para verificar sesgos sistemáticos (si la media de 
diferencias se desvía de cero) y para visualizar heterogeneidad en el error (p. ej., si el error aumenta con el valor medido). 

•Análisis cinemático: estudio del movimiento sin considerar las fuerzas, centrado en variables de posición, velocidad y aceleración de las 
partes del cuerpo. En técnica deportiva, el análisis cinemático implica registrar cómo se mueven los segmentos (trayectorias, ángulos en 
función del tiempo) durante el gesto atlético. Por ejemplo, la cinemática de una patada incluiría el ángulo de rodilla vs. tiempo, la velocidad 
del pie, etc. Es complementario al análisis cinético que trata fuerzas (que aquí no hemos detallado pero también es parte de biomecánica). 

•Confiabilidad intra/inter evaluador: ver fiabilidad intra-observador e inter-observador arriba. Son medidas de cuán consistente es un 
mismo evaluador consigo mismo y cuán consistente es con otros evaluadores respectivamente en la medición de ciertos datos.



Formulación de preguntas 
de investigación

Pregunta clara y precisa

Define exactamente qué 

aspecto de la técnica 

deportiva se estudiará y en 

qué contexto específico.

Enfoque específico

Por ejemplo: "¿Cómo afecta la 

fatiga muscular a la técnica de 

la dominada?"

Dirección clara

Una buena pregunta orienta todo el diseño metodológico y la 

recolección de datos.



Variables en la investigación biomecánica

Variable dependiente

El resultado que se desea medir o explicar

Variables independientes

Factores manipulados o examinados

Variables de control

Factores mantenidos constantes



Variable dependiente en 
dominadas

Rango de movimiento

Amplitud alcanzada durante la ejecución de la dominada, medida en 

grados o centímetros.

Velocidad media

Rapidez con la que se ejecuta la fase concéntrica, medida en metros por 

segundo.

Ángulos articulares

Posiciones específicas de hombros, codos y muñecas durante las fases del 

movimiento.

Número de repeticiones

Cantidad de dominadas correctas completadas según criterios 

establecidos.

Variables independientes en 
dominadas

Tipo de entrenamiento

Programa específico aplicado

Nivel de fatiga

Presente vs. ausente

Técnica de agarre

Prono, supino o neutro

Anchura del agarre

Estrecho, medio o ancho

Garavaglia et al. (2024)



Variables de control en dominadas

Hora del día

Control de efectos circadianos

Temperatura

Ambiente controlado

Descanso previo

Sin ejercicio intenso el día anterior

Alimentación

Tiempo desde última comida

Vestimenta

Ropa estandarizada

Operacionalización de 
variables

Identificar conceptos clave

Determinar qué aspectos de la técnica deportiva se medirán (ej. "calidad 

técnica de la dominada").

Definir indicadores medibles

Traducir conceptos abstractos en medidas concretas y observables (ej. 

ROM en hombros y codos).

Establecer unidades y métodos

Especificar cómo se medirá cada variable, con qué instrumentos y 

en qué unidades.

Garavaglia et al. (2024)



Criterios objetivos: Rango de movimiento

Extensión completa

Brazos totalmente extendidos en la 

posición inferior. Ángulo de codo cercano a 

180°.

Flexión máxima

Barbilla por encima de la barra en la 

posición superior. Ángulo de codo entre 

45-60°.

Recorrido vertical

Distancia total recorrida por el centro de 

masa o la barbilla durante la ejecución.

Garavaglia et al. (2024)



Criterios objetivos: Ángulos clave por fase

Posición inicial

Ángulo de hombro: 180° (brazos elevados)

Ángulo de codo: 180° (extensión completa) Fase concéntrica (subida)

Ángulo de hombro: reducción progresiva

Ángulo de codo: flexión progresivaPosición superior

Ángulo de hombro: 90-110°

Ángulo de codo: 45-60° Fase excéntrica (bajada)

Retorno controlado a posición inicial

Garavaglia et al. (2024)



Criterios objetivos: Parámetros cinemáticos

Velocidad

• Velocidad media concéntrica: 0,5-0,7 m/s

• Velocidad pico: 0,8-1,2 m/s

• Velocidad propulsiva media (MPV)

Aceleración

• Aceleración vertical del centro de masa

• Aceleraciones angulares de segmentos

• Jerk (cambios bruscos de aceleración)

Trayectoria

• Linealidad del movimiento vertical

• Desviaciones laterales

• Suavidad de la curva de movimiento

Garavaglia et al. (2024)



Criterios objetivos: Detección de eventos

Inicio del movimiento

Velocidad vertical > 0,05 m/s

Fase concéntrica completa

Barbilla supera el nivel de la barra

Cambio de fase

Velocidad vertical = 0 m/s

Repetición válida

Cumplimiento de todos los criterios técnicos

Garavaglia et al. (2024)



Índices compuestos de técnica

Medición de parámetros

Registro de múltiples variables 

biomecánicas

Comparación con rangos 
óptimos

Derivados de ejecuciones de atletas 

expertos

Cálculo de puntuaciones

Porcentaje de cercanía al rango ideal

Ponderación de factores

Algoritmo que integra múltiples aspectos

Garavaglia et al. (2024)



Tecnologías para análisis de movimiento
Las tecnologías modernas permiten capturar el movimiento con alta precisión. Sistemas ópticos, sensores inerciales, plataformas de 

fuerza y modelado 3D proporcionan datos complementarios para análisis integral.

Sistemas de captura de movimiento ópticos

0.1mm
Precisión espacial

Exactitud submilimétrica en la posición de marcadores

120Hz
Frecuencia típica

Capturas por segundo en sistemas estándar

6-12
Cámaras necesarias

Para captura completa de movimiento en 3D

54
Marcadores reflectantes

Utilizados en estudios de dominadas (Garavaglia et al., 2024)



Sensores inerciales (IMU)
Portabilidad

Pequeños dispositivos 

que pueden usarse 

fuera del laboratorio, 

ideales para 

mediciones en campo.

Componentes

Integran acelerómetros, 

giroscopios y 

magnetómetros para 

registrar movimiento en 

3D.

Fusión sensorial

Algoritmos que 

combinan datos de 

múltiples sensores 

para estimar 

orientación precisa.

Autonomía

Funcionamiento 

inalámbrico durante 

horas para sesiones 

completas de 

entrenamiento.

Precisión de los sensores IMU
Los sensores IMU modernos muestran errores típicos de 

4-6° comparados con sistemas ópticos.  

Presentan correlaciones de 0.95-0.99 con el gold standard 

en la mayoría de movimientos.



Diseño de protocolos experimentales

Tamaño muestral adecuado

Estudios metodológicos sugieren 30-50 sujetos para estimar 

fiabilidad con precisión. La mayoría de estudios utilizan 10-20 

participantes.

Repeticiones suficientes

Múltiples ensayos por sujeto para obtener medidas 

representativas. Garavaglia et al. (2024) utilizaron series de 3 

dominadas repetidas en dos ocasiones.

Estandarización rigurosa

Mismo entorno, equipamiento, instrucciones y calentamiento 

para todos los participantes. Control de variables extrañas.

Aleatorización y control

Orden aleatorio de condiciones para evitar efectos de 

aprendizaje o fatiga. Períodos de descanso estandarizados 

entre repeticiones.



Protocolo estandarizado 
para dominadas

Calentamiento

5 minutos de movilidad articular

3-5 dominadas submáximas

Preparación

Colocación de marcadores/sensores

Calibración del sistema

Ejecución

Series de 3 dominadas con técnica controlada

60 segundos de descanso entre series

Repetición

Segunda ronda tras 5 minutos de recuperación

Mismas condiciones que la primera

Garavaglia et al. (2024)



Validez en investigación biomecánica

Validez de medición

Exactitud de los instrumentos

Validez interna

Relaciones causa-efecto confiables

Validez externa

Generalización de resultados

Validez de constructo

Representación adecuada del fenómeno



Validez interna vs. externa

Validez interna

Grado en que podemos confiar en las relaciones causa-efecto 

dentro del estudio.

• Control riguroso de variables

• Aleatorización de condiciones

• Grupos control adecuados

• Cegamiento cuando sea posible

Validez externa

Grado en que los resultados son aplicables fuera del contexto del 

estudio.

• Representatividad de la muestra

• Realismo de las condiciones

• Aplicabilidad a situaciones reales

• Generalización a otras poblaciones

Fiabilidad en mediciones biomecánicas

Fiabilidad test-
retest

Consistencia de 

mediciones 

repetidas en días 

diferentes

Fiabilidad 
intra-evaluador

Consistencia del 

mismo evaluador 

en análisis 

repetidos

Fiabilidad 
inter-evaluador

Consistencia entre 

diferentes 

evaluadores

Fiabilidad del 
instrumento

Consistencia del 

aparato de 

medición



Coeficiente de correlación intraclase (ICC)

El ICC cuantifica la proporción de varianza total atribuible a diferencias entre sujetos. Valores cercanos a 1.0 indican alta fiabilidad.  

Sordo-Vacas et al. reportaron ICC entre 0.73-0.96 para velocidad en dominadas.



Estudio de caso: Análisis de dominadas

Captura de movimiento

Sistema Vicon con 6 cámaras 

infrarrojas y 54 marcadores 

reflectantes en puntos anatómicos 

clave.

Modelado biomecánico

Reconstrucción 3D del movimiento con 

cálculo de 22 variables biomecánicas 

por fase.

Sistema de puntuación

Índices de rendimiento y seguridad 

basados en comparación con rangos 

óptimos de atletas expertos.

Resultados de investigación en dominadas

Parámetro Principiantes Intermedios Expertos

ROM codo (grados) 110 ± 15 125 ± 10 135 ± 5

Velocidad media (m/s) 0.35 ± 0.1 0.45 ± 0.08 0.55 ± 0.05

Desviación tronco (grados) 12 ± 4 8 ± 3 4 ± 2

Asimetría brazos (%) 15 ± 5 10 ± 3 5 ± 2

Puntuación técnica (%) 65 ± 10 80 ± 8 92 ± 5

Garavaglia et al. (2024)



Conclusiones y aplicaciones 
prácticas

Metodología rigurosa

El análisis biomecánico requiere preguntas claras, variables bien 

definidas y protocolos estandarizados.

Criterios objetivos

ROM, ángulos articulares, velocidad y patrones de movimiento 

proporcionan medidas cuantificables de técnica.

Validez y fiabilidad

Fundamentales para garantizar conclusiones científicamente sólidas y 

aplicables al entrenamiento real.

Transferencia al entrenamiento

Los sistemas de puntuación técnica permiten feedback objetivo para 

mejorar el rendimiento y prevenir lesiones.





2 Validación de datos y 
consideraciones técnicas 
en el uso de IMUs y 
acelerómetros en 
biomecánica



Glosario de términos técnicos 

• IMU (Unidad de Medición Inercial): Dispositivo electrónico que combina típicamente un acelerómetro triaxial, un giroscopio triaxial y 
opcionalmente un magnetómetro triaxial. Permite medir aceleraciones lineales, velocidades angulares y campo magnético en tres ejes 
ortogonales, a partir de lo cual se puede estimar la orientación y movimiento de un objeto o segmento corporal. 

• Acelerómetro: Sensor que mide la aceleración lineal a lo largo de uno o más ejes. En las IMUs suelen ser MEMS capacitivos de tres ejes, 
midiendo la aceleración resultante (incluida la gravedad). Unidades: m/s² o "g" (donde 1 g ≈ 9.81 m/s²). 

• Giroscopio: Sensor que mide la velocidad de rotación (velocidad angular) alrededor de uno o más ejes. En IMUs se usan giroscopios MEMS 
que detectan la velocidad angular en °/s o rad/s. 

• Magnetómetro: Sensor que mide la intensidad y dirección del campo magnético, usado para estimar orientación absoluta respecto al 
campo magnético terrestre (como una brújula). Suele expresarse en microteslas (µT). Su inclusión en IMUs permite corregir la deriva de 
orientación en el plano horizontal, aunque es propenso a interferencias por metales. 

• Kinovea: Software de análisis de video 2D de uso libre, que permite extraer ángulos, posiciones y velocidades a partir de grabaciones de 
vídeo. En este contexto, se menciona como una herramienta de referencia (semi-manual) para validar mediciones de IMUs mediante el 
seguimiento de marcadores o puntos de referencia en grabaciones. 

• Vicon / OptiTrack: Sistemas de captura de movimiento ópticos, considerados gold standard en biomecánica. Utilizan cámaras infrarrojas y 
marcadores reflectantes para reconstruir en 3D la posición de segmentos corporales con alta precisión (error típico <1 mm para posición, 
<1° para ángulos). Sirven como referencia para validar sistemas inerciales. 

• RMSE (Root Mean Square Error): Raíz del error cuadrático medio. Métrica estadística que cuantifica la diferencia promedio (cuadrática) 
entre valores medidos por el IMU y valores de referencia. Un RMSE bajo indica alta precisión del sensor respecto al patrón. 

• ICC (Coeficiente de Correlación Intraclase): Índice que evalúa la concordancia o fiabilidad entre mediciones. En validación de 
instrumentos, el ICC (generalmente en modelo de dos vías, tipo absolute agreement) cuantifica cuánto de la variabilidad total se debe a 
diferencias entre métodos vs. variabilidad residual. Los valores van de 0 a 1; >0.75 generalmente se considera adecuado, >0.90 excelente. 

• Correlación de Pearson (r): Medida de asociación lineal entre dos conjuntos de datos. En este contexto, se usa para ver qué tanto las 
tendencias de la señal del IMU siguen a las del sistema de referencia. r = 1 sería correlación lineal perfecta (las señales tienen la misma 
forma, aunque puedan diferir en escala). 



• Bland–Altman (análisis o gráfica): Método gráfico-estadístico para evaluar el acuerdo entre dos métodos de medida distintos. Muestra las 
diferencias contra el promedio de ambos métodos, permitiendo visualizar sesgo (diferencia media) y dispersión (límites de acuerdo, 
típicamente media ±1.96*SD). Es útil para detectar errores sistemáticos o si la discrepancia depende del valor medido. 

• Bias (sesgo): Diferencia sistemática entre la medición del IMU y la referencia. Un bias positivo significa que el IMU mide consistentemente 
más alto que el estándar, y viceversa. Idealmente el bias debería ser cercano a 0 tras calibración. 

• Límites de acuerdo (LOA): En Bland–Altman, son los límites dentro de los cuales caerá el ~95% de las diferencias entre métodos 
(usualmente calculados como bias ± 1.96 desviaciones estándar de las diferencias). Indican el rango de discrepancia esperable entre los dos 
métodos. 

• Lin’s CCC (Coeficiente de Correlación de Concordancia de Lin): Métrica que combina precisión y exactitud para evaluar concordancia 
entre dos métodos. Penaliza tanto desplazamientos (bias) como desviaciones de la línea identidad. Un CCC = 1 indica que las medidas del 
IMU caen exactamente sobre la línea ideal 1:1 contra la referencia. 

• Soft tissue artifact (artefacto de tejido blando): Error introducido en la medición debido al movimiento relativo del sensor con respecto 
al hueso subyacente, causado por la deformación o desplazamiento de los tejidos blandos (músculo, grasa, piel) a los que está sujeto el 
sensor. Esto puede filtrar o amortiguar la señal verdadera del movimiento óseo. 

• Slippage (deslizamiento): Movimiento no deseado del sensor desplazándose o rotando sobre la piel desde su posición inicial. Provoca que 
la orientación/posición del sensor ya no represente fielmente al segmento, introduciendo error. 

• Frecuencia de muestreo: Número de muestras por segundo con que el IMU registra datos. Se mide en Hertz (Hz). Determina la resolución 
temporal de la captura; frecuencias bajas pueden perder eventos rápidos (aliasing), frecuencias excesivamente altas generan muchos datos 
redundantes y ruido. 

• Filtro (paso-bajo, paso-alto, etc.): Herramienta digital para procesar la señal eliminando ciertas frecuencias. Paso-bajo deja pasar las bajas 
frecuencias (suaviza la señal removiendo ruido rápido), paso-alto deja pasar altas (remueve componente lenta, como gravedad), pasa-banda 
deja pasar un rango específico. Un filtro Butterworth es un tipo de filtro digital con respuesta suave (sin ondulaciones en banda pasante). 

• Calibración (de sensores): Proceso de ajustar las lecturas del sensor para que correspondan a valores físicos reales. Incluye corregir bias 
(offset), escala (ganancia), alineación de ejes y a veces distorsión no lineal. Puede ser realizada por el fabricante o por el usuario mediante 
procedimientos específicos (p. ej., dejar el sensor quieto para calibrar el cero del giroscopio). 

• Test–retest: Método para evaluar fiabilidad repitiendo exactamente el mismo procedimiento de medición en dos momentos diferentes. Si 
el resultado es igual (dentro del error esperado), se considera que el instrumento tiene buena fiabilidad test-retest.



• Intraobservador / Interobservador: Se refiere a la variabilidad debida al observador (quien realiza la medición). “Intraobservador” mira la 
consistencia de un mismo observador (operador) midiendo varias veces; “Interobservador” compara las mediciones hechas por diferentes 
observadores sobre el mismo fenómeno. Diferencias grandes indicarían falta de estandarización o aspectos subjetivos en la medición. 

• SEM (Standard Error of Measurement): Desviación estándar de los errores de medición; se calcula a menudo como SD * sqrt(1-ICC). Indica 
en unidades de la variable, cuánto varía típicamente una medición repetida por error aleatorio. 

• CV (Coeficiente de Variación): Desviación estándar expresada como porcentaje de la media. Útil para cuantificar variabilidad relativa de 
una medida. En fiabilidad, un CV bajo implica variabilidad relativa pequeña entre repeticiones. 

• SWC (Smallest Worthwhile Change): Mínimo cambio relevante. En contexto deportivo, es la magnitud de cambio en una métrica que se 
considera relevante o beneficiosa. Se compara con el error de medición (SEM); si SEM < SWC, el instrumento puede detectar cambios 
significativos. 

• Filtro de Kalman: Algoritmo recursivo de estimación óptima que fusiona múltiples fuentes de datos (acelerómetro, giroscopio, 
magnetómetro) considerando sus incertidumbres, para obtener una estimación refinada (por ej., orientación). Es común en sistemas 
comerciales de IMUs para proveer orientaciones suaves y sin deriva. 



Ventajas de los sistemas IMU
Portabilidad

A diferencia de los sistemas ópticos 

tradicionales, los sensores inerciales 

son portátiles y ligeros.

Bajo costo

Representan una alternativa 

económica frente a sistemas como 

Vicon u OptiTrack.

Uso en campo abierto

Permiten evaluar movimientos 

reales en ambientes naturales sin 

restricciones de laboratorio.

Comparación con sistemas de referencia
Sistemas IMU

Portátiles y económicos

Medición en cualquier entorno

Requieren validación rigurosa

Sistemas ópticos (Gold Standard)

Alta precisión (error <1mm)

Limitados al laboratorio

Costosos y complejos



Sincronización temporal
Captura simultánea

Iniciar y detener ambos sistemas (IMU y referencia) al mismo tiempo.

Eventos conocidos

Usar un golpe o impacto visible en ambas señales como punto de 

referencia.

Correlación cruzada

Calcular la correlación entre señales para encontrar el desfase 

óptimo.

Ajuste de series temporales

Recortar inicio o final para igualar duración y fase temporal.

Alineación espacial

Alineación manual

Colocar el IMU con orientación conocida respecto al segmento 

corporal.

Calibración funcional

Realizar movimientos específicos para calcular 

transformaciones necesarias.

Referencia anatómica

Alinear el sensor con ejes anatómicos para mayor exactitud.



Métricas de validez

RMSE

Error cuadrático medio entre la serie del IMU y la referencia. 

Valores cercanos a cero indican alta precisión.

Correlación (r, R²)

Evalúa relación lineal entre medidas. Valores r > 0,9 indican 

excelente concordancia lineal.

ICC

Coeficiente de correlación intraclase. Valores > 0,75 se 

consideran buenos, > 0,90 excelentes.

Bland-Altman

Análisis gráfico que visualiza sesgo sistemático y límites de 

acuerdo al 95%.

Ejemplos de validación

Hallbeck et al. (2017)

Compararon sistema de 6 IMUs con Vicon para medir ángulos de 

hombro, codo y tronco. Errores medios bajos (2-8°).

Blandeau et al. (2022)

Validación en hexapodo robótico y con sujetos haciendo 

sentadillas. Alta precisión con CCC cerca de 0,99.

Validación de movimientos de brazo

Sensores mostraron correlaciones altas (r hasta 0,94) y ICC altos 

comparados con sistema óptico.



Colocación de sensores
Región lumbar (L5)

Ideal para aproximar el centro de masa y 

obtener datos integrales del tronco.

Esternón

Eficaz para capturar el movimiento vertical 

del cuerpo en ejercicios de tracción.

Extremidades

Sensores en muñecas o brazos para 

evaluar la dinámica de las extremidades 

superiores.

Ubicación anatómica óptima

Prominencias óseas

Zonas con menor amortiguación por 

tejido blando.

Centro del segmento

Proximidad al centro de masa del 

segmento corporal.

Minimizar tejido muscular

Evitar zonas con gran masa muscular 

que generen artefactos.

Menor movimiento relativo

Zonas donde la piel se desplaza menos 

respecto al hueso.



Fijación y sujeción del 
sensor

Cintas elásticas con velcro

Proporcionadas por fabricantes para sujetar sensores a extremidades o 

torso.

Cinta médica adhesiva

Refuerzo adicional para movimientos dinámicos y reducción de 

artefactos.

Trajes ceñidos

Con bolsillos especiales para IMUs en gestos explosivos o de alta 

aceleración.

Fajines o arneses

Con bolsillos para mayor comodidad en aplicaciones clínicas con 

pacientes.

Minimización de artefactos
Sensores ligeros

Menor masa del sensor reduce el artefacto de tejido blando.

Sujeción firme

Mayor rigidez en la fijación minimiza el desplazamiento.

Zonas de piel estable

Menor cantidad de movimiento de la piel respecto al hueso.

Orientación consistente del sensor
Marcas de orientación

Flechas o figuras impresas indicando la dirección correcta.

Ejes estandarizados

Eje Z hacia arriba y X hacia adelante en posición anatómica.

Protocolo consistente

Mantener la misma orientación en todas las pruebas.



Frecuencia de muestreo

Tipo de movimiento Frecuencia recomendada Justificación

Caminar (~1.2 m/s) 100 Hz Movimiento relativamente lento

Correr (~2.2 m/s) 200 Hz Mayor velocidad de movimiento

Movimientos cíclicos rápidos 400 Hz Captura componentes de alta frecuencia

Dominadas 100-200 Hz Suficiente para fase de vuelo y 
amortiguación



Filtrado digital de señales

Filtro paso-bajo

Elimina ruido de alta frecuencia que no 

corresponde al movimiento humano 

real.

Filtro paso-alto

Aísla componentes como la gravedad de 

la señal del acelerómetro.

Filtro pasa-banda

Selecciona cierta banda específica de 

frecuencias de interés.

Técnicas avanzadas

Filtros de Kalman o complementarios 

que fusionan acelerómetro y giroscopio.

Frecuencias de corte 
recomendadas

5-6 Hz
Análisis de marcha

Para datos cinemáticos en gestos 

lentos como caminar.

20 Hz
Datos de IMU

Para aceleraciones que incluyen más 

contenido de alta frecuencia.

0.5 Hz
Aislamiento de gravedad

Filtro paso-bajo para estimar el vector 

gravedad.



Niveles de calibración

Calibración de fábrica

Escala de acelerómetros y giroscopios predeterminada por el 

fabricante.

Calibración inicial

Posición estática conocida para "poner a cero" los ángulos 

iniciales.

Calibración funcional

Movimientos controlados para alinear sensor-segmento.

Calibración magnetómetro

Movimiento en figura de 8 para eliminar offsets y escalar.

Mantenimiento de 
dispositivos

Batería

Asegurar carga 

completa antes de 

cada sesión y 

monitorear 

durante el ensayo.

Firmware

Mantener 

actualizaciones al 

día para mejorar 

estabilidad y 

precisión.

Verificación 
periódica

Comprobar 

calibración 

regularmente, 

especialmente tras 

golpes fuertes.

Cuidado 
físico

Proteger de 

impactos, polvo o 

humedad y limpiar 

conectores.



Almacenamiento de datos

Formatos estándar

Usar CSV, C3D, TXT o HDF5 para facilitar la futura reutilización. 

Incluir metadatos como frecuencia de muestreo y calibración.

Respaldo inmediato

Tras cada sesión, respaldar archivos en otro medio como disco 

externo o nube para prevenir pérdidas.

Sincronización múltiple

Guardar información de sincronización entre varios IMUs 

mediante timestamps comunes o marcas de evento.

Transparencia en procesamiento

Documentar filtros aplicados o guardar también datos brutos 

sin procesar para reproducibilidad.



Fiabilidad test-retest
La fiabilidad test-retest evalúa la consistencia de mediciones repetidas en el mismo sujeto.  
Los valores de ICC superiores a 0,90 y CV inferiores al 5% indican excelente fiabilidad en la mayoría de las 
aplicaciones.

Variabilidad intra e interobservador

Intraobservador

Mismo técnico colocando el sensor en la misma 
persona en días distintos.

Evalúa consistencia del mismo evaluador en 
diferentes momentos.

Afectada por técnica de colocación y experiencia.

Interobservador

Diferentes técnicos colocando el sensor en la misma 
persona.

Evalúa si distintos evaluadores obtienen resultados 
comparables.

Requiere protocolo de colocación bien estandarizado.



Fuentes de inconsistencia
Las principales fuentes de inconsistencia incluyen: repetibilidad de la colocación, deriva de calibración, 
cambios en el sujeto (fatiga, aprendizaje) y procesamiento de señal inconsistente.

Estrategias para mejorar la fiabilidad
Capacitación del evaluador

Asegurar que quien coloca los sensores siga 
exactamente el protocolo establecido.

Estandarizar instrucciones

Misma entrada en calor y cadencia de 
movimiento para reducir variabilidad biológica.

Múltiples repeticiones

Registrar varios intentos y promediar para 
reducir el error aleatorio.

Control ambiental

Realizar pruebas en condiciones similares 
(hora, fatiga, calzado).



Análisis de dominadas con IMUs

Colocación en pecho

El sensor en el esternón registra la 
aceleración vertical y la inclinación del 
tronco durante cada repetición.

Colocación en espalda alta

Permite detectar correctamente el 
inicio/fin de cada repetición y la altura 
alcanzada.

Análisis de fases

El IMU detecta cambios de aceleración 
al inicio y final de la fase concéntrica.



Métricas en dominadas con IMUs

0.8s
Tiempo de ascenso

Duración de la fase concéntrica desde inicio hasta punto máximo.

1.2m/s
Velocidad media

Velocidad promedio durante la fase de ascenso.

2.5g
Aceleración pico

Máxima aceleración registrada durante el impulso inicial.

45cm
Rango vertical

Desplazamiento total desde posición inicial hasta máxima altura.



Conclusiones y recomendaciones

1

Validación rigurosa

Comparar siempre con sistemas de referencia confiables.

Protocolos estandarizados

Establecer procedimientos claros para colocación y calibración.

Configuración técnica adecuada

Ajustar frecuencia de muestreo y filtrado según el movimiento.

Fiabilidad comprobada

Verificar consistencia mediante pruebas test-retest.

Aplicación específica

Adaptar el sistema a las características del gesto deportivo.





3 Implementación de IA/ML 
con Sensores Inerciales 
para Análisis de 
Dominadas en 
Biomecánica Deportiva



Glosario de términos técnicos 

• Inteligencia Artificial (IA): Área de la computación que busca crear sistemas capaces de realizar tareas que normalmente requieren 
inteligencia humana. Incluye muchos subcampos, desde planificación y razonamiento hasta percepción. El ML y DL son sub-disciplinas de la 
IA. 

• Aprendizaje Automático (Machine Learning, ML): Conjunto de técnicas dentro de la IA que permiten a un sistema aprender patrones a 
partir de datos, en lugar de ser programado explícitamente con reglas fijas. Incluye algoritmos supervisados, no supervisados y por 
refuerzo. En biomecánica se usa para reconocer actividades, predecir valores biomecánicos, etc. 

• Aprendizaje Profundo (Deep Learning, DL): Subcampo de ML que utiliza redes neuronales artificiales con múltiples capas (profundas) 
para modelar datos complejos. Puede descubrir automáticamente representaciones de alto nivel en los datos. Ejemplo: una red profunda 
puede aprender características de la señal de un IMU que correspondan a patrones de movimiento, sin intervención humana. 

• Sensor Inercial (IMU): Dispositivo que combina usualmente un acelerómetro (mide aceleración lineal en 3 ejes) y un giroscopio (mide 
velocidad angular en 3 ejes), a veces también un magnetómetro (campo magnético, usado para orientación absoluta). Proporciona 
mediciones de movimiento del cuerpo donde esté colocado. Son pequeños y se usan como wearables para captar la cinemática humana. 

• CRISP-ML: Adaptación del estándar CRISP-DM (Cross-Industry Standard Process for Data Mining) al ciclo de vida de proyectos de Machine 
Learning. Consta de fases: 1) Entendimiento del negocio/problema, 2) Entendimiento de los datos, 3) Preparación de los datos, 4) Modelado, 
5) Evaluación, 6) Despliegue. Es iterativo y ... Es iterativo y adaptado a los proyectos de ML, asegurando retroalimentación constante y 
control de calidad en cada fase. 

• HAR (Human Activity Recognition): Reconocimiento automático de actividades humanas. En español a veces Reconocimiento de Actividad 
Humana. Consiste en clasificar qué acción realiza una persona (caminar, correr, saltar, etc.) a partir de sensores. En biomecánica deportiva, 
HAR abarca distinguir diferentes ejercicios o fases de un movimiento mediante datos de IMUs, vídeos, etc. 

• Sobreajuste (Overfitting): Ocurre cuando un modelo aprende demasiado los detalles o ruido del conjunto de entrenamiento y pierde 
capacidad de generalizar a nuevos datos. Un signo de sobreajuste es rendimiento casi perfecto en entrenamiento pero pobre en validación. 
Se combate con regularización, más datos, o modelos más simples. 

• Regularización: Conjunto de técnicas para impedir el sobreajuste penalizando la complejidad del modelo. Por ejemplo, la regularización L2 
agrega un término que fuerza a que los pesos de un modelo sean lo más pequeños posibles, simplificando la solución. Otra forma es 
regularización por abandono (dropout), que aleatoriamente desconecta neuronas durante el entrenamiento para que la red no dependa de 
combinaciones específicas de características. 



• Dropout: Técnica de regularización en redes neuronales donde se “apagan” aleatoriamente un porcentaje de neuronas en cada iteración de 
entrenamiento. Esto obliga a la red a ser más robusta, ya que no puede confiar en una ruta específica para hacer una predicción. En 
validación/prueba, todas las neuronas están activas pero el efecto es equivalente a promediar muchos sub-modelos, reduciendo el 
sobreajuste. 

• Métricas de clasificación: 
• Accuracy (Exactitud): Fracción de predicciones correctas sobre el total. Útil como indicador global, pero puede ser engañosa si las 

clases están desbalanceadas. 
• Precisión (Precision): Porcentaje de instancias predichas como positivas que realmente lo son (TP/(TP+FP)). Alta precisión significa 

pocas alarmas falsas. 
• Exhaustividad o Recall: Porcentaje de instancias positivas reales que el modelo logra identificar (TP/(TP+FN)). Alto recall significa 

pocos falsos negativos (no se le escapan muchos positivos verdaderos). 
• F1-Score: Media armónica de precisión y recall, útil para resumir ambas en un solo valor. 
• AUC-ROC: Área bajo la curva ROC, mide la capacidad de separabilidad de clases del modelo en diferentes umbrales (1.0 es perfecta, 

0.5 es aleatoria). 
• MCC (Matthews Correlation Coefficient): Métrica entre -1 y 1 que considera verdaderos y falsos de ambas clases; es informativa aun 

con clases desequilibradas (1 es perfecto, 0 aleatorio, -1 totalmente erróneo). 

• Algoritmos y modelos comunes: 
• Árbol de decisión: Modelo de clasificación/regresión basado en reglas if-then anidadas en forma de árbol. Fácil de interpretar pero 

puede sobreajustar si es muy profundo. 
• Random Forest (Bosque aleatorio): Ensamble de muchos árboles de decisión entrenados sobre distintas muestras; suele mejorar 

generalización y manejar bien datos tabulares. 
• SVM (Support Vector Machine): Clasificador que encuentra el hiperplano que mejor separa las clases en el espacio de características, 

utilizando kernels para casos no lineales. Eficaz en conjuntos de tamaño moderado y alta dimensión, aunque menos usado hoy en día 
frente a redes neuronales para grandes datasets. 

• Red Neuronal Convolucional (CNN): Tipo de red profunda especializada en extraer características espaciales o temporales usando 
filtros (convoluciones). En señales de tiempo, las CNN 1D pueden captar patrones locales (ej. un pico de aceleración). Han demostrado 
alto rendimiento en reconocimiento de patrones complejos. 

• Red Neuronal Recurrente (RNN): Red diseñada para secuencias, que mantiene estados internos para recordar información previa. 
Las variantes modernas como LSTM (Long Short-Term Memory) o GRU solucionan problemas de memoria a largo plazo en secuencias. 
Se usan para modelar dependencias temporales largas (p. ej., en series de IMU para captar dinámica en el tiempo). 

• Transformer: Arquitectura de red basada en mecanismos de atención en lugar de recurrencia. Permite capturar relaciones de largo 
alcance en secuencias de forma eficiente. En HAR empieza a usarse para secuencias largas de sensores, aunque es más común en NLP 
y visión. 



• Cuantización (Quantization): Proceso de reducir la precisión numérica de un modelo, por ejemplo pasar de pesos en coma flotante de 32 
bits a enteros de 8 bits. Esto comprime el modelo (menos memoria) y puede acelerar la inferencia en hardware sencillo sin unidad de coma 
flotante, con mínima pérdida de precisión si se hace correctamente. 

• Poda de modelo (Pruning): Técnica de compresión donde se eliminan (ponen a cero) pesos o neuronas poco relevantes de la red neuronal. 
El modelo resultante es más ligero y rápido, manteniendo casi el mismo rendimiento si la poda se hace sobre componentes realmente 
“irrelevantes”. Puede realizarse iterativamente con re-entrenamiento para recuperar desempeño. 

• SHAP: Acrónimo de SHapley Additive exPlanations. Método post-hoc de explicabilidad que atribuye a cada característica un valor que 
representa su contribución a la predicción de un modelo para una instancia dada. Se basa en la idea de los valores de Shapley de la teoría 
de juegos. Útil para explicar por qué el modelo tomó cierta decisión (p. ej., “esta variación en aceleración sumó +0.2 a la probabilidad de ser 
dominada correcta”) de manera consistente y localmente precisa. 

• LIME: Local Interpretable Model-Agnostic Explanations. Otro método de XAI que genera explicaciones locales ajustando un modelo 
interpretable (lineal o árbol corto) en la vecindad de la predicción a explicar. Ayuda a aproximar qué características impulsaron la decisión 
en esa región del espacio de datos. 

• Model Card (Tarjeta de modelo): Documento estandarizado que acompaña a un modelo de ML, describiendo sus características de 
rendimiento, datos de entrenamiento, alcance previsto y limitaciones conocidas​. Propuesto para fomentar la transparencia, especialmente 
en modelos usados por públicos no expertos. Una model card para nuestro modelo de dominadas incluiría, por ejemplo: “Entrenado con 
1000 reps de 20 individuos (15H/5M), preciso 95% en conteo de repeticiones, probado en edades 20-40; no validado para dominadas 
asistidas; puede fallar si el sensor se mueve del pecho.” 

• Deriva de concepto (Concept drift): Fenómeno donde la relación estadística entre las características de entrada y la salida objetivo cambia 
con el tiempo. El modelo “aprendido” se vuelve menos válido porque el proceso subyacente evolucionó. En biomecánica, esto puede 
suceder si el atleta modifica su técnica o condición física, o si se usa el modelo en un contexto diferente al original. Requiere recalibrar o 
reentrenar periódicamente el modelo para mantener la precisión. 



Marco Teórico General

Relevancia de IA/ML 
en Biomecánica

La IA y ML permiten analizar 

datos de movimiento humano 

de manera objetiva y 

automatizada.

Metodologías de 
Desarrollo

Se sigue un flujo similar a 

CRISP-DM adaptado a ML 

(CRISP-ML) con fases 

iterativas.

Aplicaciones Deportivas

Ya implementado en sentadillas, saltos y carrera con alta precisión.



Tareas de Modelado en Biomecánica

Detección de eventos

Identificar instantes específicos en la señal

Regresión

Predecir valores continuos como ángulos o fuerzas

Clasificación

Reconocer actividades o evaluar calidad técnica

Estas tareas permiten analizar el movimiento humano desde diferentes perspectivas, adaptándose a los objetivos específicos del análisis 

biomecánico. La elección del enfoque depende de la información que se desea extraer de los datos inerciales.



Técnicas de ML Utilizadas

Algoritmos Clásicos

k-NN, árboles de decisión, SVM, análisis discriminante

Aprendizaje Profundo

CNN, RNN con celdas LSTM para datos temporales

Arquitecturas Avanzadas

Mecanismos de atención y modelos transformer

La evolución de técnicas ha permitido mejorar la precisión en reconocimiento de actividades humanas. Jeong et al. lograron hasta un 96% 

de exactitud en clasificación multi-ejercicio con CNN profunda.



Aplicación Específica en 
Dominadas

Segmentación del gesto en fases

División en inicio, ascenso hasta "catch" y descenso/fin.

Detección automática de repeticiones

Conteo preciso mediante identificación de ciclos en datos.

Estimación de ángulos articulares

Inferencia de parámetros cinemáticos como ángulos de codo y 

hombro.

Clasificación de variantes técnicas

Reconocimiento de diferentes tipos de dominadas y errores 

técnicos.



Resultados de 
Investigaciones Previas

96%
Exactitud en clasificación

En reconocimiento de ejercicios como 

dominadas mediante CNN.

93%
Precisión en conteo

Con error ≤ ±1 repetición en sistemas 

automáticos.

97%
Fiabilidad ampliada

Permitiendo un error de ±2 

repeticiones en el conteo.

Estos resultados demuestran la viabilidad de sistemas basados en IA para 

análisis de dominadas con alta precisión, comparable a la observación humana 

experta.



Arquitectura del Sistema

Módulo de 
Reconocimiento (ARM)

CNN con bloque de post-

procesamiento para segmentar 

ejercicios.

Módulo de Conteo 
(RCM)

Detecta y cuenta repeticiones de 

forma automática.

Sensores Inerciales

Colocados en mano, pecho y pie del deportista para capturar movimiento.



Preparación de Datos: Estructuración

Colocación de sensores

Ubicación estratégica en pecho o 

muñeca para capturar movimiento 

relevante

Frecuencia de muestreo

Entre 50-200 Hz para captura óptima de 

movimiento humano

Etiquetado temporal

Anotación precisa de intervalos y 

repeticiones como ground truth

Organización de trazas

Estructuración por sujeto, sesión y 

ejercicio para facilitar análisis



Preprocesamiento de Señales
Filtrado

Pasa-bajos (5-10 Hz) 

para eliminar ruido de 

alta frecuencia.

Calibración

Alineación de ejes con 

referencias 

anatómicas.

Normalización

Estandarización 

estadística para 

mejorar convergencia.

Segmentación

División en ventanas 

para análisis 

individualizado.

Extracción de Características

Características Temporales

• Media y desviación estándar

• Máximos y mínimos por eje

• Número de picos o cruces por cero

• Pendiente máxima (RFD: explosividad)

Características Frecuenciales

• Energía en bandas específicas

• Frecuencia dominante

• Entropía espectral

• Transformadas FFT o wavelets

Características Cinemáticas

• Ángulos relativos

• Detección de posturas extremas

• Diferencias entre sensores

• Orientación mediante quaterniones



Segmentación en Ventanas 
Móviles

1 Tamaño de Ventana

2-5 segundos para capturar estructura completa de una 

repetición.

2 Solapamiento

50-75% para no perder transiciones entre ventanas.

3 Etiquetado

Cada ventana recibe etiqueta según la tarea (actividad, fase, etc.).

El estudio de Patalas-Maliszewska demostró que con ventanas solapadas se 

logra mejor accuracy (0.92 vs 0.88) en la detección de actividad, evidenciando la 

utilidad de esta técnica.



Balanceo de Clases

Sobremuestreo

SMOTE genera muestras sintéticas 

de la clase minoritaria mediante 

interpolación.

Submuestreo

Descarte aleatorio de muestras de 

la clase mayoritaria para equilibrar.

Pesos de Clase

Penalización mayor para errores en 

la clase minoritaria durante el 

entrenamiento.



División de Datos y 
Prevención de Leakage

Separación por Sujeto

Entrenar con datos de algunos participantes y reservar otros para prueba 

(Leave-One-Subject-Out).

Separación por Sesión

Dividir por sesiones distintas para evitar que patrones específicos de 

una sesión se filtren.

Gestión de Ventanas Solapadas

Asegurar que ventanas que se traslapan queden en el mismo 

grupo (entrenamiento o prueba).

Normalización Independiente

Calcular parámetros de normalización solo con datos de 

entrenamiento, no incluyendo los de prueba.



Procedimientos de Validación Cruzada

3

k-fold cross-validation

División en k subconjuntos, entrenando k 

modelos diferentes y promediando 

resultados.

Leave-One-Subject-Out (LOSO)

Iteración tomando datos de un sujeto 

como prueba y entrenando con los demás.
Hold-out con validación 

interna

Reserva de conjunto fijo (20%) y k-fold CV 

con el resto (80%) para desarrollo.



Métricas de Desempeño
Métrica Fórmula Interpretación

Precisión (Precision) TP / (TP + FP) Proporción de 

predicciones 

positivas correctas

Exhaustividad (Recall) TP / (TP + FN) Proporción de 

positivos reales 

detectados

F1-Score 2 * (Prec * Rec) / 

(Prec + Rec)

Media armónica de 

precisión y recall

AUC-ROC Área bajo curva ROC Capacidad de 

discriminación 

(1=perfecta, 0.5=azar)

MCC Coeficiente entre -1 y 

1

Correlación entre 

predicción y realidad



Regularización y 
Prevención de Sobreajuste

Regularización L2

Añade penalización proporcional al cuadrado de los pesos, evitando que 

crezcan demasiado y manteniendo el modelo simple.

Dropout

Desconecta aleatoriamente un porcentaje de neuronas en cada iteración, 

obligando a la red a aprender representaciones redundantes.

Early Stopping

Interrumpe el entrenamiento cuando la métrica de validación empeora, 

evitando el sobreajuste a los datos de entrenamiento.

Data Augmentation

Añade perturbaciones a las señales durante el entrenamiento, como ruido 

o variaciones temporales, aumentando la robustez.



Frameworks y Herramientas

TensorFlow/Keras

Ofrece funciones listas para usar como 

capas CNN1D, optimizadores con 

regularización y callbacks para early 

stopping.

PyTorch

Muy flexible para personalizar 

arquitecturas complejas y experimentar 

con nuevos modelos.

Scikit-learn

Popular para algoritmos tradicionales 

como árboles, SVM y utilidades para 

validación cruzada.



Inferencia en Tiempo Real

Ventanas deslizantes

Buffer de tamaño N que se actualiza con nuevas muestras.

Optimización de tiempo

Cómputo más rápido que el intervalo entre ventanas.

Profiling

Medición de tiempos para ajustar complejidad del modelo.

La latencia total desde que ocurre el evento hasta la notificación debe ser corta 

(0.1-0.2s) para una experiencia fluida. En conteo de repeticiones, un ligero 

retraso es tolerable.



Optimización y Compresión 
de Modelos

Cuantización

Reducción de precisión numérica de 32 bits a 8 bits, disminuyendo 

tamaño y aumentando velocidad.

Pruning (Poda)

Eliminación de conexiones poco importantes, creando un modelo más 

esparso y eficiente.

Distillation

Entrenamiento de modelo pequeño para imitar salidas de uno grande, 

transfiriendo conocimiento.

Optimización de arquitectura

Diseño de modelos más simples adaptados a las restricciones del 

dispositivo objetivo.



Herramientas para Dispositivos Portables

TensorFlow Lite Micro

Versión de TF Lite para microcontroladores 

sin sistema operativo, funciona con muy 

poca RAM (decenas de KB).

CMSIS-NN

Librerías optimizadas de redes neuronales 

específicamente para procesadores ARM 

Cortex-M.

Edge Impulse

Plataforma que facilita entrenar e 

implementar modelos en diferentes placas 

como Arduino Nano 33 BLE Sense.



Dispositivos Compatibles

RAM (KB) Velocidad (MHz)

Estos microcontroladores ofrecen diferentes capacidades para ejecutar modelos de ML. El objetivo es lograr que incluso la plataforma 

más sencilla pueda ejecutar el modelo optimizado con precisión aceptable.



Pipeline Completo de Análisis
Adquisición

Sensores IMU obtienen datos continuamente mediante interrupciones de temporizador para asegurar periodicidad.

Preprocesamiento local

Filtrado y segmentación en tiempo real, manteniendo buffer circular de muestras para la ventana actual.

Inferencia del modelo

Normalización de datos y ejecución del modelo para producir predicciones sobre clase o parámetros biomecánicos.

Post-procesamiento

Aplicación de lógica adicional como filtrado de mediana para suavizar predicciones y conteo de repeticiones.

Feedback/Visualización

Presentación de resultados al usuario mediante pantalla, LED, vibración o transmisión Bluetooth.



Explicabilidad del Modelo

Importancia de 
Características

Cálculo de la influencia de cada feature 

en la predicción, basado en la reducción 

de impureza que genera.

Ejemplo: "Amplitud de aceleración 

vertical" como atributo más influyente 

para detectar repeticiones.

SHAP

Asignación de valores de contribución a 

cada característica, fundamentado en 

teoría de juegos.

Muestra qué características específicas 

influyeron en clasificar una repetición 

como correcta o incorrecta.

LIME

Construcción de modelo lineal simple 

alrededor de la vecindad de la instancia a 

explicar.

Permite descubrir qué cambios en la 

señal modificarían la predicción del 

modelo.



Conclusiones y Futuras Direcciones

Viabilidad demostrada

Alta precisión en detección y análisis de 

dominadas con sensores inerciales y ML 1

Portabilidad creciente

Modelos optimizados funcionando en 

dispositivos de bajos recursos

Personalización adaptativa

Sistemas que evolucionan con el usuario 

mediante aprendizaje continuo

Integración multidisciplinar

Colaboración entre biomecánica, 

ciencias del deporte e inteligencia 

artificial

La combinación de sensores inerciales con IA/ML representa un avance significativo en el análisis biomecánico, ofreciendo herramientas 

accesibles y precisas para mejorar el rendimiento deportivo y prevenir lesiones.




