XEV12D

CONTROLADOR PARA VÁLVULAS ELECTRÓNICAS

DE EXPANSIÓN DE TIPO ON-OFF

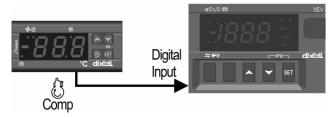
CONTENIDO Advertencias generales Descripción general _ Regulación 3. Frente Interfaz de usuario 5 6. Lista de parámetros _ 2 Entradas digitales 8 Función de puesta en marcha _ 3 Conexiones 3 Línea serial RS485 10. 3 Memoria USB de programación 3 Mensajes en pantalla 3 12. 13. Datos técnicos 3 14. Esquemas de conexión 3 15. Valores estándar 3 Ejemplo de aplicación

1. ADVERTENCIAS GENERALES

POR FAVOR LEA LAS ADVERTENCIAS ANTES DE PROSEGUIR CON LA LECTURA DEL MANUAL.

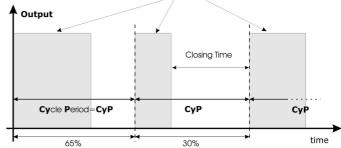
- Este manual forma parte del producto y debe conservarse en el equipo para una consulta rápida y fácil.
- El regulador no debe usarse para funciones que difieran de las que se describen a continuación, en especial no se puede usar como dispositivo de seguridad.
- Antes de continuar, controle los límites de aplicación.

PRECAUCIONES DE SEGURIDAD


- Antes de conectar el equipo controle que la tensión de alimentación sea la requerida
- No exponga el equipo al agua o a la humedad: use el regulador sólo en los límites de funcionamiento admitidos, evitando cambios bruscos de temperatura unidos a alta humedad atmosférica, para evitar la formación de condensación.
- Atención: antes de iniciar cualquier operación de mantenimiento desconecte las conexiones eléctricas del equipo.
- El equipo jamás debe abrirse.
- En caso de fallo o funcionamiento defectuoso, envíe el equipo de vuelta al distribuidor o a "DIXELL S.r.I." (vea la dirección) con una descripción detallada del problema.
- Tenga en consideración la corriente máxima que se puede aplicar en cada relé (vea Datos Técnicos).
- Coloque la sonda de manera que el usuario final no pueda alcanzarla.
- Cerciórese de que los cables de las sondas, de la alimentación del regulador y de la alimentación de las cargas permanezcan separados o suficientemente distanciados entre sí, sin que se crucen o formen espirales.
- En el caso de aplicaciones en ambientes industriales particularmente críticos, puede ser útil además usar filtros de red (nuestro mod.FT1) en paralelo a las cargas inductivas.

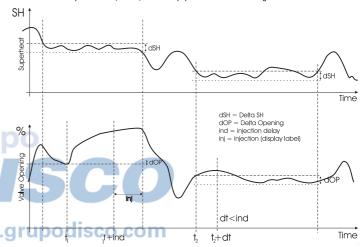
2. DESCRIPCIÓN GENERAL

Los módulos XEV12D han sido diseñados para controlar válvulas electrónicas de expansión de tipo ON/OFF. Estos módulos permiten regular el recalentamiento del refrigerante dentro del evaporador a fin de optimizar las prestaciones y hacerlas más independientes de las condiciones ambientales y de carga. Cuentan con una entrada para el transductor de presión que puede ser de tipo 4÷20mA o de tipo radiométrico (0÷5V) y con una entrada para sonda de temperatura de tipo Pt1000 o NTC. Una conexión LAN permite transmitir la señal de presión a los demás módulos XEV de manera tal de poder utilizar un solo transductor de presión en aplicaciones canalizadas. Además, los XEV cuentan con dos entradas digitales configurables: una debe ser configurada como entrada de solicitud de regulación o de demanda de frío. La otra puede ser usada para indicar al controlador que se está verificando un defrost. La pantalla con íconos permite una visualización útil del sobrecalentamiento (SH), del porcentaje de tiempo de activación de la válvula y el valor de las sondas. El teclado local permite programar el instrumento sin dispositivos adicionales. Para complementar el equipo, el serial RS485 permite conectar el XEV12D con los sistemas de monitoreo y supervisión dIXEL.


3. REGULACIÓN

La regulación del sobrecalentamiento se realiza sólo cuando existe una demanda de frío. El esquema siguiente ilustra cómo el XEV percibe que esta demanda está activada:

La regulación se logra a través de un controlador PI que cambia el tiempo de activación de la válvula dentro del período del ciclo. El porcentaje de apertura de la válvula se obtiene a partir del promedio de tiempo de apertura con respecto al período del ciclo CyP, como se indica en el siguiente diagrama:


Opening Time

Por porcentaje de apertura se entiende el porcentaje del período del ciclo en el que la válvula se encuentra abierta. Por ejemplo, si **CyP = 6 segundos** y decimos: "La válvula está abierta en un 50%"; entendemos que la válvula está abierta por **3 segundos** durante el período.

3.1 GESTIÓN DE INYECCIÓN

El gráfico ilustra cómo funciona la función de gestión de la inyección. Cuando el sobrecalentamiento se mantiene confinado dentro de la banda dSH (delta SuperHeat) y la válvula continúa aumentando su apertura en un porcentaje mayor que dOP (delta OPening) durante el tiempo ind (injection delay) el controlador indica un problema de gas. Cuando se verifica este hecho, el comportamiento de la válvula puede regularse a través del parámetro inb (injection behaviour) que permite seleccionar si la válvula debe cerrarse completamente (inb=cL), o si el equipo debe continuar la regulación.

FRENTE

SET	Visualiza y modifica el Set- Point. En modo programación permite seleccionar el parámetro y confirmar el valor.			
	En modo programación permite desplazarse por el código de los parámetros o aumentar su valor.			
~	En modo programación permite desplazarse por los códigos de los parámetros o disminuir su valor.			

COMBINACIÓN DE TECLAS

Bloquea o desbloquea el teclado

SET +

Para entrar en el modo de programación de los parámetros

Presionando durante 5 segundos estas teclas se activa la válvula que permanece abierta hasta que se vuelven a presionar las dos teclas (ver la función de puesta en marcha de la instalación). También permite salir del modo programación de parámetros.

4.1 LED DEL XEV12D

SET

En la siguiente tabla se describe el significado de los puntos luminosos presentes en la pantalla:

LED	MODO	Función	
Γ®	ENCENDIDO	Alarma de baja presión (LOP)	
ΗØ	ENCENDIDO	Alarma de máxima presión operativa (MOP)	
X	APAGADO	Válvula cerrada	
X	ENCENDIDO	Válvula abierta	
=	PARPADEO	Comunicación serial activada	
#	APAGADO	Comunicación serial ausente	
	ENCENDIDO	Alarma de sobrecalentamiento	

INTERFAZ DE USUARIO

PARA VER LOS PARÁMETROS DE SÓLO LECTURA

- Pulse v suelte la tecla o
- Se visualiza la etiqueta del primer parámetro de sólo lectura: presione SET para visualizarlo;
- 3) Desplácese por los otros parámetros de sólo lectura con las teclas o o n
- 4) Para salir, presione y suelte las teclas o + SET o aguarde a que se agote el tiempo de espera (aproximadamente 3 minutos).

VISUALIZACIÓN DEL SET-POINT

Presione y suelte la tecla SET; para volver a ver la temperatura, espere aproximadamente 5 s o presione nuevamente la tecla SET.

MODIFICACIÓN DEL SET-POINT

Para cambiar el valor del Set-Point proceda de la siguiente manera:

- Presione la tecla SET hasta que se visualice el Set y el punto luminoso sobre el valor parpadee;
- 2) Use o o n para cambiar el valor.
- 3) Presione "SET" para memorizar el nuevo valor.

PARA ENTRAR EN EL NIVEL "PR1"

Para entrar en el nivel "Pr1":

- SFT+n 1) Presione las teclas durante aproximadamente 3 segundos
- El instrumento visualizará el primer parámetro disponible en el nivel Pr1.

5.5 PARA ENTRAR EN EL NIVEL "PR2"

Para entrar en el nivel "Pr2".

- Entre en "Pr1"
- Seleccione el parámetro "Pr2" y presione SET
- En la pantalla aparecerá la etiqueta "PAS"; a continuación se visualizará "O - - " con 0 parpadeando.
- Introduzca el código de seguridad "321" mediante las teclas o y n; presione SET para confirmar.

MODIFICAR EL VALOR DE UN PARÁMETRO

Para cambiar el valor de un parámetro proceda de la siguiente manera:

- Entre en el modo de programación de los parámetros.
- Busque el parámetro deseado
- Pulse la tecla "SET" para visualizar el valor del parámetro
- Use o o n para cambiar el valor.
- Pulse nuevamente "SET" para memorizar el nuevo valor y pasar al parámetro siguiente. 5

Salir: Presione SET + O o espere 30 s sin tocar ninguna tecla.

NOTA: el valor modificado se memoriza también si se sale del modo programación al agotarse el tiempo de espera

6. LISTA DE PARÁMETROS

NOTA: ¡Todos los parámetros de presión se encuentran vinculados con el parámetro PrM! Si PrM=rEL, todos los parámetros de presión deben considerarse relativos; si PrM=AbS, todos los parámetros de presión deben considerarse absolutos.

REGULACIÓN

- Tipo de gas (R22, 134, 404, 407, 410, 507, CO2): Tipo de gas utilizado en la instalación. Parámetro fundamental para un funcionamiento correcto del sistema.
- Porcentaje de apertura en caso de error de sonda: (0÷100%) Si se verifica un error de PEO sonda, la apertura de la válvula será igual a este valor durante el tiempo PEd.
- Tiempo de error de la sonda antes del bloqueo: (0+239 s On-illimitado) si la duración del error de la sonda es mayor que el tiempo **PEd** la válvula se cierra completamente. Si PEd PEd=On la válvula permanece en el porcentaje PEo hasta que se restablece el error de la
- Habilitación de la función de start: (n÷y) n= al activarse la entrada digital configurada ESF como CCL la regulación comienza instantáneamente; Y= al activarse la entrada digital configurada como CCL la válvula se abre en el porcentaje OPE durante el tiempo SFd
- **Apertura en la fase de Start:** (0÷100%) Porcentaje de apertura configurada durante la OPE fase de post defrost y al activarse la función de start. La duración de esta fase está dada
- SFd Duración del procedimiento de Start: (0.0÷42.0 min: decenas de segundos) Configura la duración de la fase de start. Durante esta fase las alarmas son ignoradas.
- Retraso de inyección: (0.0÷42.0 min: decenas de segundos) ver el apartado 3.1 ind
- **delta SuperHeat:** (0.1÷10°C / 1÷50°F) ver apartado 3.1 dSH
- dOF delta apertura porcentual: (0÷100%) ver apartado 3.1
- Comportamiento alarmas de inyección: (cL ÷ rEG) cuando se verifica una alarma de inyección si inb=cL la válvula se cierra completamente, si inb=rEG la válvula se regula normalmente mediante el regulador PI (ver apartado Error! Reference source not
- Sti Intervalo de pausa de regulación: (0.0÷24.0 horas: decenas de minutos) si la válvula continúa regulando todo el tiempo Sti sin pausas, la misma se coloca en pausa cerrándose durante el período de tiempo Std para prevenir la formación de hielo duro.
- Std Duración de la pausa de regulación: (0÷60min.) define la duración de la pausa de regulación luego del período Sti. Durante esta pausa se visualiza el mensaje StP.

- MnF Porcentaje de máxima apertura de la válvula: (0÷100%) durante la regulación
- parámetro configura el porcentaje máximo de apertura que puede asumir la válvula.

 Time out de activación forzada de la válvula: (0.0÷24.0 horas: decenas de minutos) FOt al agotarse este tiempo contado desde la activación forzada de la válvula (ver apartado de función de puesta en marcha de la instalación) se vuelve a la regulación normal

PARÁMETROS PI (personal calificado)

- **Período de ciclo:** (1 ÷ 15 s) permite seleccionar el tiempo de ciclo. **Banda Proporcional:** (0.1 ÷ 50.0 / 1 ÷ 90°F) banda proporcional PI CyP Pb
- Offset de banda: (-12.0 ÷ 12.0 °C / -21÷21 °F) offset de banda PI rS
- inC Tiempo integral: (0 ÷ 255 s) tiempo de integración PI

PARÁMETROS SONDA

- tipo de transductor de presión: (PP LAn) configura el tipo de transductor de presión: PP= transductor 4÷20mA o 0÷5V radiométrico, LAn= la presión llega desde otro módulo XEV a través de la LAN específica.
- Valor de presión a 4mA o a 0V: (-1.0 bar / -14 PSI / -10 dKPa ÷ P20) valor medido por la PA4 sonda a 4mA o a 0V. (valor dependiente del parámetro PrM)

 Valor de presión a 20 mA o a 5 V: (PA4 ÷ 50.0 bar / 725 psi / 500 kPA*10) valor medido
- P20 por la sonda a 20mA o a 5V. (valor dependiente del parámetro PrM)
- oPi Calibración de la sonda de presión (-12.0 ÷ 12.0 bar / -174÷174 psi / -120 ÷ 120 kPA*10)
- Tipo de sonda de temperatura: (PtM ÷ Ntc) permite configurar el tipo de sonda de ΗF temperatura: **PtM** = Pt1000, **ntC** = NTC.
- otE Calibración de sonda de temperatura: (-12.0 ÷ 12.0 °C / -21÷21 °F)

ENTRADAS DIGITALES

- Polaridad de la entrada digital 1 (contacto libre): (CL,OP) CL= activo cerrado; OP= i1P activo abierto
- Función de la entrada digital 1 (contacto libre): (CCL, rL, dEF) CCL= demanda de frío; rL= activación relé; dEF= indicación de defrost
- Retraso de la activación de la entrada digital 1 (contacto libre): (0÷255 min.) este d1d retraso de activación es utilizado sólo si la entrada digital está configurada como rL
- i2P Polaridad de la entrada digital 2 (tensión alimentación): (CL, OP) CL= activo cerrado;
- i2F Función de la entrada digital 2 (tensión de alimentación): (CCL, rL, dEF) CCL= demanda de frío; rL= activación relé; dEF= indicación de defrost
- d2d Retraso activación de la entrada digital 2 (tensión de alimentación): (0÷255 min.) este retraso de activación es utilizado sólo si la entrada digital está configurada como rL

ALARMAS

WWW

- OAh Retraso en el aviso de las alarmas: (0.0÷42.0 min: decenas de segundos) intervalo de tiempo entre la activación de la entrada digital configurada como CCL y el aviso de las
- Tipo de alarma indicada por el relé: (ALL, SH, PrE, DI, LOC, inj) ALL= todas las alarmas; SH= alarma de sobrecalentamiento; PrE= alarma de presión; DI= activación con entrada digital configurada como rL; LOC= activación en caso de bloqueo por intervenciones de presión; inj= activación en caso de alarmas de inyección.
- LPL Límite inferior de presión para la regulación del sobrecalentamiento: (PA4 ÷ P20 bar / psi / kPA*10) cuando la presión de aspiración desciende por debajo de este valor la regulación se realiza utilizando el valor LPL como valor fijo de presión. (valor dependiente del parámetro PrM)
- MOP Umbral de máxima presión operativa: (PA4 ÷ P20 bar / psi / kPA*10) si la presión de aspiración supera este valor el equipo indica la situación mediante el LED H[®] y la alarma MOP. (valor dependiente del parámetro PrM) Umbral de baja presión: (PA4 \div P20 bar / psi / kPA^*10) si la presión de aspiración
- LOP desciende por debajo de este valor se activa el LED L[®] . (valor dependiente del parámetro PrM)
- PHy Histéresis de alarma de presión: (0.1 ÷ 5.0 bar / 1÷ 72 psi / 1÷50 kPA*10) histéresis de desactivación de alarmas de presión.
- delta MOP-LOP: (0 ÷ 100%) cuando se verifica una alarma MOP la válvula se cierra en el dML porcentaie dML en cada período de ciclo mientras que la alarma esté activada. Cuando se verifica una alarma LOP la válvula se abre en el porcentaje dML en cada período de ciclo mientras que la alarma LOP esté activada.
- tPA Tiempo máximo entre dos operaciones MOP y/o LOP: (0.0÷42.0 min: decenas de segundos) intervalo de tiempo máximo entre dos operaciones de señalización de presión para que puedan ser detectadas.
- nPA Cantidad de eventos antes del bloqueo: (0=Off ÷ 100) cantidad de operaciones MOP o LOP durante el tiempo "tPA" hasta que se produzca el bloqueo del equipo.

 Alarma de máximo sobrecalentamiento: (LSH ÷ 80.0 °C/ LSH ÷ 176°F) cuando el
- MSH sobrecalentamiento medido supera este valor por un período superior a SHd se indica una
- Alarma mínima de sobrecalentamiento: (0.0 ÷ MSH °C/ 32 ÷ MSH °F) cuando el LSH sobrecalentamiento desciende por debajo de este valor por un período SHd se indica la alarma y la válvula se cierra completamente
- SHY Histéresis de alarma de sobrecalentamiento: (0.0 ÷ 25.5°C / 1 ÷ 77°F) histéresis para
- la desactivación de la alarma de sobrecalentamiento

 Retraso de alarma de sobrecalentamiento: (0+255s) la alarma de sobrecalentamiento se SHd indica sólo cuando se han superado los límites configurados para todo el período SHd
- Constante de Fast-recovery: (0÷100s) permite agilizar el cierre de la válvula cuando el FrC sobrecalentamiento desciende por debajo del set-point. Si FrC=0 la función está deshabilitada

PANTALLA

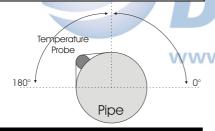
Visualización por defecto: (SH, PEr, P1, P2) SH= superheat; PEr = porcentaje de apertura de la válvula; P1= valor de la temperatura medida; P2= valor detectado por la sonda de presión;

- Unidad de medida de la temperatura: (°C÷°F) °C= grados Celsius; °F= grados Fahrenheit: ATENCIÓN: al cambiar la unidad de medida se deben modificar correctamente los parámetros
- PMU Unidad de medida de la presión: (bAr, psi, kPA*10) bAr= bar; PSI= psi; PA= KPa*10; ATENCIÓN: al cambiar la unidad de medida se deben modificar correctamente los parámetros
- PrM Modo de visualización de la presión: (rEL÷AbS) rEL= presión relativa; AbS= presión absoluta; todos los parámetros de presión dependen de este parámetro
- CLt Tiempo estadística demanda frío: (0÷48h) intervalo de tiempo utilizado para el cálculo del porcentaje de tiempo durante el cual la demanda de frío permanece activa
- CLP Porcentaje de demanda de frío (sólo lectura): visualiza el porcentaje de tiempo CLt durante el cual la demanda de frío se encontraba activa
- tP1 Temperatura sonda P1 (sólo lectura): visualiza la temperatura detectada por la sonda P1
- Presión detectada (sólo lectura): visualiza el valor de presión detectado por P2 PPr Valor de temperatura detectado mediante P2 (sólo lectura): visualiza el valor de
- temperatura detectado por la conversión del valor de presión obtenido por P2
- d1S Estado entrada digital 1 (sólo lectura): visualiza el estado de la entrada digital 1; 425 Estado entrada digital 2 (sólo lectura): visualiza el estado de la entrada digital 2;
- Dirección serial RS485: (1÷247) dirección del controlador cuando se conecta dentro de Adr
- un sistema ModBUS compatible. Mod Modbus: (StD÷AdU) StD= permite utilizar XEV en modo autónomo, en este caso se utiliza el protocolo estándar de comunicación ModBUS-RTU; AdU= (sólo para sistemas XWEB)
- en este caso XEV y el controlador termostático se consideran un único equipo y, por lo tanto, tienen la misma dirección serial (requiere una biblioteca personalizada)
- Pth Código mana: (sólo lectura) define el mana de parámetros
- Versión de Firmware: (sólo lectura) identifica la versión del firmware rEL
- Menú de segundo nivel

ENTRADAS DIGITALES

Hay presentes dos entradas digitales, una de estas es por contacto libre y la otra por tensión de alimentación. Ambas son configurables como demanda de frío (CCL) como rL o como defrost (dEF). De este modo, la demanda de frío puede ser suministrada por equipos con cargas directas o con cargas sin voltaje. Una de estas entradas digitales debe ser configurada como demanda de frío.

UNCIÓN DE PUESTA EN MARCHA


Si fuera necesario, presionando durante 5 segundos las teclas O + SET el controlador mantiene abierta la válvula y la pantalla muestra la etiqueta "ON". Para deshabilitar la función y volver al funcionamiento normal presione nuevamente las mismas teclas o active la entrada digital configurada como CCL o espere que se agote el tiempo de espera FOt.

CONEXIONES

El instrumento tiene un bornero de tornillo para conectar cables con sección máxima de 2,5 mm². Utilice cables resistentes al calor. Antes de conectar los cables asegúrese de que la tensión de alimentación corresponda a la del equipo. Separe los cables de conexión de las entradas de los de alimentación, de las salidas y de las conexiones de potencia

SONDAS

Se aconseia colocar la sonda de temperatura según el esquema de al lado, entre 0 y 180 grados con respecto a la sección horizontal del tubo. Para la sonda de presión no existen indicaciones especiales de colocación.

10. LÍNEA SERIAL RS485

Todos los modelos pueden ser conectados al sistema de monitoreo y supervisión XWEB3000. Si Mod=Std se utiliza el protocolo estándar ModBUS-RTU, si Mod=AdU se necesita una biblioteca personalizada para la administración del controlador

MEMORIA USB DE PROGRAMACIÓN

PROGRAMACIÓN DE LA MEMORIA USB

- Programe el equipo con los valores deseados.
- Introduzca la memoria USB con el **equipo encendido**, luego presione la tecla $oldsymbol{o}$. Se pone en marcha la operación de programación de la memoria USB. En la pantalla aparece "uPL" intermitente
- Al final el equipo visualiza durante 10 s:
 - "End": la programación ha finalizado correctamente.
 - "Err": la programación no ha finalizado correctamente. Si se presiona la tecla o se reinicia la programación.

PROGRAMACIÓN DEL EQUIPO CON LA MEMORIA USB.

Para programar el equipo con una memoria USB ya programada, actúe de la siguiente manera:

- Apague el equipo o póngalo en stand-by desde el teclado. Introduzca la memoria USB programada.
- Encienda el equipo: inicia la descarga (DOWNLOAD) automática de los datos de la memoria USB al equipo. En la pantalla aparece "doL" intermitente
- Al final el equipo visualiza durante 10 s:
 - "End" si se ha completado correctamente la programación y la regulación arranca nuevamente. "Err" si la programación no ha finalizado correctamente. En este momento repita la operación o quite la memoria USB para iniciar la regulación normal.

MENSAJES EN PANTALLA

Mens.	Causa	Salida
	Ninguna entrada digital configurada como CCL se encuentra activa	
"ON"	La función de puesta en marcha de la instalación está activada	Válvula abierta
"P1"	Sonda de temperatura en estado de error	Según PEo y PEd
"P2"	Sonda de presión en estado de error	Según PEo y PEd

Mens.	Causa	Salida
"HSH"	Alarma de sobrecalentamiento alto	Según el PI
"LSH"	Alarma de bajo sobrecalentamiento	Válvula cerrada
"MOP"	Máxima presión operativa	Según dML
"LOP"	Mínima presión operativa	Según dML
"StF"	Función de Start activa	Según ESF
"StP"	Regulación detenida mediante Sti y Std	Válvula cerrada
"dEF"	Defrost activo	Válvula cerrada
"EE"	Anomalía de memoria	

12.1 RECUPERACIÓN DE ALARMAS

Las alarmas sonda "P1", "P2" se inician unos segundos después de verificarse el error y se restablecen automáticamente unos segundos después de que las sondas vuelven a funcionar. Controle las conexiones antes de sustituir las sondas. "HSH" "LSH" "MOP" "LOP" se restablecen automáticamente apenas se restablecen los valores

Contenedor: ABS autoextinguible.

Formato: 4 módulos DIN 70x85 mm; prof. 61 mm;

Montaje: montaje sobre barra DIN omega (3)

Grado de protección: IP20

Conexiones: bornero de tornillo para conductores ≤2,5 mm².

Alimentación: según modelo: 24 Vac ±10%: 110 Vac ±10%: 230 Vac ±10% 50/60 Hz

Potencia absorbida: 6VA máx.

Visualización: tres cifras con ícono, LED rojos, altura 14,2 mm.

Entradas 1 sonda Pt1000 o NTC;

1 transductor de presión 4÷20 mA o 0÷5 V;

Entradas digitales: 1 contacto libre

1 con tensión de alimentación. Salidas: válvula 30W máx.

Mantenimiento de datos: en memoria no volátil (EEPROM).

Tipo de acción: 1B; Nivel de contaminación: normal; Clase software: A Temperatura de trabajo: 0÷60 °C; Temperatura de almacenamiento: -25÷60 °C.

Humedad relativa: 20÷85% (sin condensación)

ESQUEMAS DE CONEXIÓN

RS485

Resolución: 0,1 °C o 1 °F; Precisión a 25°C:: ±0,7 °C ±1 dígito

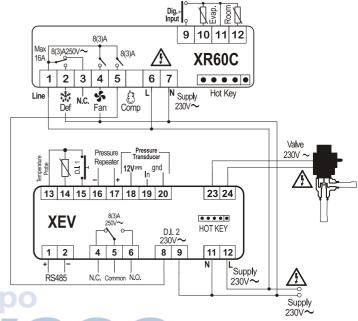
Input 0÷5V gnd ln Input Pressure Valve 0÷12V Repeater 230V ~ 12V--gnd + 13 14 15 23 24 16 **d7** 18 19 20 8(3)A \bullet \bullet \bullet \bullet 250V~ **HOT KEY** 12 1 2 4 8 11 5 6 9 N

Modelos 24-110 Vac: La alimentación, las entradas digitales en alta tensión y la salida válvula son respectivamente de 24 Vac o 110 Vac.

D.I. 2

N.C. Common N.O.

Supply


230V~

15. VALORES ESTÁNDAR							
Etiq.	Descripción	Rango	Por defecto	Nivel			
REGUL	REGULACIÓN						
FtY	Tipo de gas	R22 , 134 , 404, 407, 410, 507, CO2	404	Pr2			
PEo	Porcentaje de apertura en caso de error de sonda	0 ÷ 100 %	50	Pr2			
PEd	Tiempo de error de la sonda antes del bloqueo	0 ÷ 239 s - On	On	Pr2			
ESF	Habilitación de la función de start	n ÷ Y	Υ	Pr2			
OPE	Apertura fase de start y post-defrost	0 ÷ 100 %	85	Pr2			
SFd	Duración fase de start y post-defrost	0.0÷42.0 min: decenas de segundos	1.3	Pr2			
ind	Retraso de inyección	0.0÷42.0 min: decenas de segundos	10.0	Pr2			
dSH	delta SuperHeat	0.1 ÷ 10°C / 1÷50°F	0.1	Pr2			
dOP	delta apertura porcentual	0 ÷ 100 %	100	Pr2			
inb	Comportamiento alarmas de inyección	cL ÷ rEG	rEG	Pr2			

	NEL			
Sti	Intervalo de pausa de regulación	0.0÷24.0 horas:	1.3	Pr2
		decenas de minutos		
Std	Duración de la pausa de regulación Porcentaje de máxima apertura de la	0÷60 min.	3	Pr2
MnF	válvula Time out de activación forzada de la	0 ÷ 100 %	100	Pr2
FOt	válvula	0.0÷24.0 horas: decenas de minutos	0.1	Pr2
PARÁM	ETROS PI (personal calificado)			
СуР	Período de ciclo	1 ÷ 15 s	6	Pr1
Pb	banda proporcional	0.1 ÷ 50.0 °C / 1÷90 °F	4.0	Pr2
rS	Offset banda	-12.0 ÷ 12.0 °C / -21	0.0	Pr2
inC	tiempo integral	÷ -6,11°C 0 ÷ 255 s	120	Pr2
PARÁM	ETROS SONDAS			
tPP	tipo de transductor de presión	PP - LAn	PP	Pr2
PA4	Valor de presión a 4mA o a 0V	0.0 ÷ P20 bar	-0.5	Pr2
P20	Valor de presión a 20 mA o a 5 V	PA4 ÷ 50.0 bar	11.0	Pr2
oPr	Calibración sonda de presión	-12.0 ÷ 12.0 bar / -174 ÷ 174 psi / -120 ÷ 120 kPA*10	0	Pr2
ttE	Tipo de sonda de temperatura	PtM ÷ ntc	PtM	Pr2
otE	Calibración de sonda de temperatura	-12.0 ÷ 12.0 °C / -21	0	Pr2
	DAS DIGITALES	÷ 21 °F	-	
i1P	Polaridad de la entrada digital 1	CL – OP	cL	Pr2
	(contacto libre): Función de la entrada digital 1			
i1F	(contacto libre) Retraso de la activación de la entrada	CCL , rL, dEF	CCL	Pr2
d1d	digital 1 (contacto libre)	0 ÷ 255 min.	0	Pr2
i2P	Polaridad de la entrada digital 2 (tensión alimentación)	CL – OP	cL	Pr2
i2F	Función de la entrada digital 1 (tensión de alimentación)	CCL , rL, dEF	CCL	Pr2
d2d	Retraso activación de la entrada digital 2 (tensión de alimentación):	0 ÷ 255 min.	0	Pr2
ALARM	· · ·			
dAO	Retraso en el aviso de las alarmas	0.0÷42.0 min: decenas de segundos	3.3	Pr2
tdA	Tipo de alarma indicada por el relé	ALL, SH, PrE, DI, LOC, inJ	ALL	Pr2
LPL	Límite inferior de presión para la regulación del sobrecalentamiento:	PA4 ÷ P20 bar / psi / kPA*10	-0.5	Pr2
МОР	Umbral de máxima presión operativa	PA4 ÷ P20 bar / psi / kPA*10	11.0	Pr2
LOP	Umbral de mínima presión	PA4 ÷ P20 bar / psi /	0.0	Pr2
PHy	Histéresis de alarma de presión	kPA*10 0,1 ÷ 5,0 bar / 1÷ 72	0.1	Pr2
dML	delta MOP-LOP	PSI / 1÷50 kPA*10 0 ÷ 100 %	10	Pr2
tPA	Tiempo máximo entre dos operaciones MOP y/o LOP	0.0÷42.0 min: decenas de	0.1	Pr2
nPA	Cantidad de eventos antes del bloqueo	segundos 0(Off) : 100	0	Pr2
MSH	Alarma de máximo sobrecalentamiento	0(Off) ÷ 100 LSH ÷ 32.0 °C / LSH	50.0	
		÷ 176 °F 0.0 ÷ MSH °C / 32 ÷		Pr1
LSH	Alarma de mínimo sobrecalentamiento	MSH °F 0,1 ÷ 25,5 °C / 1 ÷	2.5	Pr2
SHY	Histéresis de sobrecalentamiento	77°F	0.5	Pr2
SHd	Retraso activación alarma de sobrecalentamiento	0 ÷ 255 s	10	Pr2
FrC	Constante de Fast-recovery	0÷100 s	50	Pr2
PANTA	LLA			
Lod	Visualización por defecto	SH - PEr – P1 - P2	SH	Pr2
CF	Unidad de medida temperatura	°C - °F	°C	Pr2
	Unidad de medida de la presión	bAr – PSI – PA	bar	Pr2
PMu		rEL – AbS	rEL	Pr2
PrM	Modo de visualización de presión			
PrM CLt	Tiempo estadística demanda de frío	0 ÷ 48 horas	48	Pr1
PrM CLt CLP	Tiempo estadística demanda de frío Porcentaje de demanda de frío	0 ÷ 48 horas Sólo lectura	48	Pr1
PrM CLt CLP tP1	Tiempo estadística demanda de frío Porcentaje de demanda de frío Temperatura sonda P1	0 ÷ 48 horas Sólo lectura Sólo lectura	48	Pr1 Pr1
PrM CLt CLP	Tiempo estadística demanda de frío Porcentaje de demanda de frío	0 ÷ 48 horas Sólo lectura	48	Pr1

d1S	Estado de la entrada digital 1	Sólo lectura		Pr1
d2S	Estado de la entrada digital 2	Sólo lectura		Pr1
Adr	Dirección serial	1÷247	1	Pr2
Mod	Modbus	Std – AdU	StD	Pr2
Ptb	Mapa de parámetros			Pr2
rEL	Versión del software			Pr2
Pr2	Menú de segundo nivel			Pr1

16. EJEMPLO DE APLICACIÓN

ISCO

w.grupodisco.com

Dixell S.r.I. - 32010 Pieve d'Alpago (BL) ITALY - Z.I. Via dell'Industria, 27 Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - www.dixell.com - dixell@emerson.com