Gestión de energía Contador de Energía Eléctrica Modelo EM210

CARLO GAVAZZI

- Gestión fácil de conexiones
- Display desmontable
- Caja multiusos: tanto para montaje a carril DIN como sobre panel

- Clase B (kWh) según norma EN50470-3
- Clase 1 (kWh) según norma EN62053-21
- Clase 2 (kvarh) según norma EN62053-23
- Precisión ± 0,5 lectura (corriente/tensión)
- Medidor de energía
- · Lectura instantánea de variables: 3 dígitos
- · Lectura de energías: 7 dígitos
- Variables del sistema: W, var, PF, Hz, secuencia de fase.
- Variables de cada fase: VLL, VLN, A, PF
- Mediciones de energía: kWh totales (importados y exportados); kvarh
- Mediciones TRMS (Media cuadrática total) de ondas sinusoidales distorsionadas (tensiones/corrientes)
- Autoalimentación
- Dimensiones: 4 módulos DIN y 72x72mm
- Grado de protección (delantero): IP50
- Display adaptable de aplicaciones y procedimiento de programación (función Easyprog)

Descripción del producto

Contador trifásico de energía con display LCD frontal desmontable. La misma unidad puede ser utilizada para montaje a carril DIN y sobre panel. El contador trifásico universal es apropiado para medida de la energía eléctrica tanto activa como reactiva

para asignación de costes, aunque también puede ser utilizado para medida y transmisión de variables eléctricas (función de transductor). Posibilidad de que aparezca también la energía activa exportada (por ejemplo, en el caso de la energía regenerada en los

ascensores o aplicaciones similares). Caja para montaje a carril DIN con grado de protección (frontal) IP50. Las medidas de intensidad se llevan a cabo mediante trafos de intensidad externos, mientras que las medidas de tensión se llevan a cabo tanto por medio de conexión

directa como por trafos de medida de tensión. El modelo EM210 dispone, de forma estándar, de una salida de pulso para transmisión de la energía activa. Además dispone como opción del puerto de comunicación RS485 de dos hilos.

Modelo Código de Rango Sistema Alimentación Salida 1 Salida 2 Opción

Selección del modelo

Códi	go de Rango	Sist	ema	Alim	entación	Орс	iones
AV5:	400VLL AC, 5(6)A o 1(6)A (*) (Conexión CT)	3:	carga equilibrada y desequilibrada: trifásica, 4 hilos;	X:	Autoalimentación de 40V a 480VAC LL, de 45 a 65 Hz (conexión	X:	ninguno
AV6:	120/230VLL AC 5(6)A o 1(6)A (*) (conexiones VT/PT y CT)		trifásica, 3 hilos (sin conexión N); bifásica, 3 hilos; monofásica, 2 hilos		VL2-VL3)		
Salic	da 1	Sali	da 2	` '	a escala 1(6)A se		
O:	Una salida estática (opto-mosfet)	X: S:	Ninguno Puerto RS485	encuentra disponible pero no cumple la norma EN50470-3.			

Especificaciones de entrada

Entrada nominal	Tipo de sistema: trifásico	(capacidad de medida máxima)
Tipo de corriente	No aislada (entradas en Indicación máxima y mínima	
ripo do demento	paralelo). Nota: Los trans-	Variables instantáneas máximas: 999; energías:
	formadores de corriente	9 999 999. Variables
	exteriores pueden ser co-	instantáneas mínimas: 0;
	nectados a tierra individual-	energías 0,00.
	mente.	LED rojo (consumo de
Escala de intensidad (por CT)	AV5 y AV6: 5(6)A. La escala	energía)
	"1(6)A" se encuentra	0,001 kWh por pulso si la re-
	disponible pero no cumple	lación del trafo de intensidad
Tanaián (a antique a nav.) (T/DT)	la norma EN50470-3.	CT x la relación del trafo de
Tensión (continua o por VT/PT)	AV5: 400VLL; AV6: 120/230VLL.	tensión VT es <7;
Precisión (Display + RS485)	In: ver a continuación, Un:	0,01 kWh por pulso si la rela-
recision (Display + No+05)	ver a continuación	ción del trafo de intensidad
(@25°C ±5°C, R.H. ≤60%, 50Hz)	voi a continuación	CT x la relación del trafo de
Modelo AV5	In: 5A, Imax: 6A; Un: 160 a	tensión VT es ≥ 7,0 < 70,0;
	260VLN (277 a 450VLL).	0,1 kWh por pulso si la rela-
Modelo AV6	In: 5A, Imax: 6A; Un: 40 a	ción del trafo de intensidad CT x la relación del trafo de
	144VLN (70 a 250VLL).	tensión VT es \geq 70,0 < 700,0;
Intensidad modelos AV5, AV6	De 0,002ln a 0,2ln: ±(0,5%	1 kWh por pulso si la rela-
	lec. +3díg.).	ción del trafo de intensidad
	De 0,2In a Imax:	CT x la relación del trafo
Tensión de fase neutra	±(0,5% lec. +1díg.).	de tensión VT es ≥ 700,0.
Tension de fase neutra Tensión fase-fase	In el rango Un: ±(0,5% lec. +1díg.). In el rango Un: ±(1% lec. +Fdag)uencia máxima	16Hz, según norma
Frecuencia	Rango: 45 a 65Hz;	EN50470-3. El LED verde
Tredeficia	resolución: ±1Hz	(junto a los bloques de
Potencia activa	±(1%lec.+2díg.).	terminales) indica el estado
Factor de potencia	±[0,001+1%(1,000 - "lec. PF")].	de la alimentación (estable)
Potencia reactiva	±(2%lec.+2díg.).	y de la comunicación: RX-
Energía activa	clase B según norma	TX parpadeando (sólo en
	EN50470-1-3;	caso de opción RS485).
	clase 1 según norma Mediciones	Ver "Lista de las
_ ,	EN62053-21.	variables que pueden ser
Energía reactiva	clase 2 según norma	conectadas a:"
	EN62053-23. Método In: 5A, Imax: 6A; 0,1 In: 0,5A.	Mediciones TRMS de
	Intensidad de arranque: 10mA.	las formas de onda distorsionadas.
Errores adicionales de energía	Tipo de acoplamiento	Mediante CTs externos.
Magnitudes que influyen	Según normas EN620 Factor de cresta	In 5A: ≤3 (15A pico máx.).
	21, EN50470-1-3, Sobrecarga de corriente	S. ii _S (15/1 pico max.).
	EN62053-23 Continua	6A, @ 50Hz.
Deriva térmica	≤200ppm/°C. Para 500ms	120A, @ 50Hz.
Frecuencia de muestreo	1600 muestra/s @ 50H hobrecargas de voltaje	
Tiemene de vetveces del dienless	1900 muestra/s @ 60HzContinua	1,2 Un
Tiempo de refresco del display Display	1 segundo Para 500ms 2 líneas Impedancia do entrada (intensidad)	2 Un
Display	Primera línea: 7díg.,	
	Segunda línea: 3díg. o 5(6)A	< 0,3VA
	Primera línea: 3díg. + 3rdíg edancia de entrada de tensión	
	Segunda línea: 3díg. Alimentación independiente	Consumo de energía:
Tipo	LCD, h 7mm.	< 2VA
Lectura de variables instantáneas	3díg. Frecuencia	50 ± 5Hz/60 ± 5Hz.
Energías	Teclado Consumida: 5+2, 6+1 o 7díg.	Dos pulsadores para
-	Indicación de EEE cuando el	selección de variables
Estado de sobrecarga	valor medido supera la "So-	y programación de los
	brecarga de entrada continua"	parámetros de trabajo del instrumento.
	2.00a.ga do oridinada ooridinad	nionalifonio.

Especificaciones de salida Salida de impulso

Salida de impulso		D: .	tamente en el instrumento
Número de salidas	1	Direcciones	247, a seleccionar por
Tipo	Programable de 0,01 a		medio del teclado frontal
	9,99 kWh por pulso. Salida	Protocolo	MODBUS/JBUS (RTU)
	conectable a los contado-	Datos (bidireccionales)	
	res de energía (kWh)	Dinámico (sólo lectura)	Variables del sistema y de
Duración del impulso	T _{OFF} ≥120ms, según norma	,	fases: ver tabla "Lista de
	EN62052-31.		variables"
	T _{ON} seleccionable (30 ms	Estático (lectura y escritura)	Todos los parámetros de
	o 100 ms) según norma	,	configuración
	EN62053-31	Formato de datos	1 bit de inicio, 8 bits de
Salida	Estática: opto-mosfet.	. care de dates	datos, y paridad par, 1 bit o
	•		2 bits de parada.
Carga	V _{ON} 2,5 VAC/DC máx. 70	Tasa de baudios	9.6, 19.2, 38.4, 57.6, 115.2
Alalamaianta	mA, V _{OFF} 260 VAC/DC máx.	lasa de baddios	kbps.
Aislamiento	Mediante optoacopladores,	Canacidad da antrada	kups.
	4000 VRMS entre salida y	Capacidad de entrada	d/F
	entradas de medida.	del controlador	1/5 carga unidad. Máximo
RS485			160 transceptores en el
Tipo	Multipunto, bidireccional		mismo bus.
	(variables estáticas y	Aislamiento	Mediante optoacopladores,
	dinámicas)		4000 VRMS entre salida y
Conexiones	2 hilos. Distancia máx.		entrada de medida.
	1000m, terminación direc-		

Funciones del software

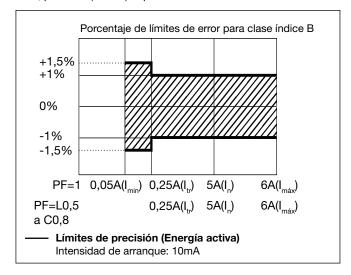
Contraseña	Código numérico de 3díg.; 2 niveles de protección de los datos de programa como máximo:	Relación del transformador Relación VT (PT) CT	1,0 a 99,9 / 100 to 999 1,0 a 99,9 / 100 to 999. El producto máx CT por VT
Primer nivel	Contraseña "0", sin protec- ción;		para AV6 modelos es 2421 (opción X).
Segundo nivel	Contraseña de 1 a 999, todos los datos están protegidos	Visualización	Hasta 3 variables por página. Ver "Páginas
Bloqueo de programación	A través de un conmutador (en la parte posterior del módulo display) es posible bloquear el acceso a todos los parámetros de configura- ción.		display". Se dispone de 3 grupos diferentes de variables (ver "Páginas display") dependiendo de la función de medida seleccionada.
Selección del sistema		Reinicio	Mediante el teclado frontal:
Sistema 3F+N carga		Francisco de consulto (fall	total energías (kWh, kvarh).
desequilibrada	3 fases (4 hilos) 3 fases (3 hilos) sin conexión neutral.	Función de conexión fácil	Detección y visualización de fase incorrecta. En todas las páginas del
Sistema 3F+1 carga			display (exceptuando "D" y "E"), las medidas de
equilibrada	 3 fases (3 hilos) una medida de intensidad y 3 medidas de tensión entre fases. 3 fases (4 hilos) una medida de intensidad y 3 medidas de tensión fase y neutro. 3 fases (2 hilos) una medida de intensidad y 1 medida de intensidad y 1 medida de tensión fase (L1, terminal 10) a neutro (N, terminal 9). 		corriente, potencia, energía son independientes de la dirección de la corriente.
Sistema 2F (bifásico)	2 fases (3 hilos)		
Sistema 1F (monofásico)	1 fases (2 hilos)		

Especificaciones generales

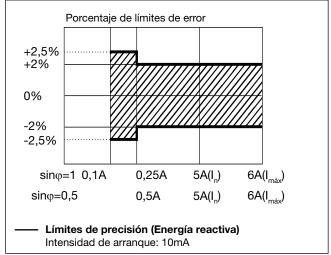
Temperatura de funcionamiento	-25°C a +55°C (-13°F a	Sobrevoltaje	En el circuito de entradas
remperatura de funcionalmento	131°F) (R.H. de 0 a 90%	Sobrevoltaje	de medida de intensidad y
	sin condensación) según		tensión: 6kV;
	norma EN62053-21 y	Eliminación de radio frecuencia	Según el CISPR 22
	EN62053-23.	Conformidad al estándar	
Temperatura de almacenamiento	-30°C a +70°C (-22°F a	Seguridad	EC60664, IEC61010-1
	158°F) (R.H. < 90% sin		EN60664, EN61010-1
	condensación) según		EN62052-11
	norma EN62053-21 y	Metrología	EN62053-21, EN62053-23,
	EN62053-23)	Calida da impulso	EN50470-3
Categoría de la instalación	Cat. III (IEC 60664,	Salida de impulso Aprobaciones	DIN43864, IEC62053-31 CE, cULus listed
	EN60664)	Conexiones	A tornillo
Aislamiento (durante 1 minuto)	4000 VRMS entre entradas	Sección del cable	2,4 x 3,5 mm
	de medida y salida digital.		Par de apretamiento Mín/
Rigidez dieléctrica	4000VAC RMS durante 1		Máx.: 0,4 Nm / 0,8 Nm
	minuto.	Caja	
Rechazo al ruido CMRR	100 dB, 48 a 62 Hz	Dimensiones (AnxAlxP)	72 x 72 x 65 mm
EMC	Según la EN62052-11	Material	Noryl, PA66
Descargas electrostáticas	Descarga en el aire 5kV;	Montaje	Autoextinguible: UL 94 V-0 Panel y carril DIN
Inmunidad a los campos			I allel y carrii biiv
electromagnéticos irradiados	Prueba con corriente:	Grado de protección Frontal	IP50
	10V/m de 80 a 2000MHz:	Terminales de tornillo	IP20
	Prueba sin corriente:		
Differen	30V/m de 80 a 2000MHz;	Peso	Aproximadamente 400g
Ráfaga	En el circuito de entradas de medida de intensidad y		(incluido el embalaje)
	tensión: 4kV		
Inmunidad a las perturbaciones	torioion. Tity		
conducidas	10V/m de 150kHz a 80Mhz		

Especificaciones de alimentación

través de entrada "VL2" y "VL3"	Autoalimentación		Consumo de energía	≤2VA/1W
----------------------------------	------------------	--	--------------------	---------


Aislamiento entre las entradas y las salidas

	Entrada de medición	Salida Opto-Mosfet	Puerto de comunicación	Autoalimentación
Entradas de medida	-	4kV	4kV	0kV
Salida Opto-Mosfet	4kV	-	-	4kV
Puerto de comunicación	4kV	-	-	4kV
Autoalimentación	0kV	4kV	4kV	-


NOTA: Todos los modelos deben de ser conectados obligatoriamente a transformadores de corriente externos.

Precisión (Según las normas EN50470-3 y EN62053-23)

kWh, precisión (lectura) dependiendo de la intensidad

kvarh, precisión (lectura) dependiendo de la intensidad

Formulas de cálculo utilizadas

Variables de fase

Tensión eficaz instantánea

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Potencia activa instantánea

$$W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Factor de potencia instantáneo

$$\cos \varphi_1 = \frac{W_1}{VA_1}$$

Corriente efectiva instantánea

$$A_{1} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (A_{1})_{i}^{2}}$$

Potencia aparente instantánea

$$VA_1 = V_{1N} \cdot A_1$$

Potencia reactiva instantánea

$$var_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

Variables de sistema

Tensión trifásica equivalente

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$$

Asimetría de tensión

Medición de energía

 $\cos\varphi_{\Sigma} = \frac{W_{\Sigma}}{VA}$

Factor de potencia trifásico

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t) dt \cong \Delta t \sum_{n=1}^{n} Qnj$$

$$kWhi = \int_{t_1}^{t_2} Pi(t) dt \cong \Delta t \sum_{n_1}^{n_2} Pnj$$

Potencia activa trifásica

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Potencia aparente trifásica

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \text{var}_{\Sigma}^2}$$

Donde:

i= fase considerada (L1, L2 o L3) P= potencia activa; Q= potencia reactiva; t1, t2 =tiempos inicial y final del registro del consumo de energía; n= unidad de tiempo; Δ t= intervalo de tiempo entre dos consumos sucesivos de energía; **n1**, **n2** = puntos discretos inicial y final del registro del consumo de energía.

Lista de las variables que se pueden conectar a:

- Puerto de comunicación RS485
- Salidas de pulso (solo "energías")

N°	Variable	Sistema monofá- sico	Sistema bifásico	Sis. trifási- co equili- brado (4 hilos)	Sis. trifási- co equili- brado (3 hilos)	Sis. trifá- sico no equilibrado (4 hilos)	Sis. trifá- sico no equilibrado (3 hilos)	Notas
1	kWh	х	х	х	Х	х	Х	Total (2)
2	kvarh	х	х	х	х	х	х	Total (3)
3	V L-N sys (1)	0	х	х	х	х	х	sys=sistema (∑)
4	V L1	х	х	х	х	х	х	
5	V L2	0	х	х	Х	х	Х	
6	V L3	0	0	х	х	х	х	
7	V L-L sys (1)	0	х	х	х	х	х	sys=sistema (∑)
8	V L1-2	0	х	х	х	х	х	
9	V L2-3	0	0	х	х	х	х	
10	V L3-1	0	О	х	х	х	х	
11	A L1	х	х	х	х	х	х	
12	A L2	0	х	х	х	х	х	
13	A L3	0	0	х	х	х	х	
14	VA sys (1)	х	х	х	х	х	х	sys=sistema (∑)
15	VA L1 (1)	х	х	х	х	х	х	
16	VA L2 (1)	0	х	х	х	х	х	
17	VA L3 (1)	0	0	х	х	х	х	
18	var sys	х	х	х	х	х	х	sys=sistema (∑)
19	var L1 (1)	х	х	х	х	х	х	
20	var L2 (1)	0	х	х	х	х	х	
21	var L3 (1)	0	О	х	х	х	х	
22	W sys	х	х	х	х	х	х	sys=sistema (∑)
23	W L1 (1)	Х	х	х	Х	х	Х	
24	W L2 (1)	0	х	х	Х	х	х	
25	W L3 (1)	0	О	х	х	х	х	
26	PF sys	х	х	х	Х	х	Х	sys=sistema (∑)
27	PF L1	х	х	х	Х	х	Х	
28	PF L2	0	х	х	Х	х	Х	
29	PF L3	0	0	х	Х	х	Х	
30	Hz	х	х	х	х	х	х	
31	Secuencia de fase	0	0	х	Х	х	Х	

⁽x) = disponible

⁽o) = no disponible (indicación cero en el display)

^{(1) =} Variable disponible solo a través del puerto de comunicación serie RS485

^{(2) =} también kWh- (exportados) con aplicación E (ver la siguiente tabla)

^{(3) =} suma (no algebraica) de kvarh importados y exportados con la aplicación F (ver la siguiente tabla)

Páginas display

N°	1ª variable	2ª variable	3ª variable	Notas	Aplicaciones					
	(1ª mitad de línea)	(2ª mitad de línea)	(2ª línea)		Α	В	С	D	E	F
		Secuencia de fase	•	El triángulo de secuencia de fase aparece en cualquier página solo si hay una inversión de fase	х	х	х	х	х	х
1	kWh t	otales	W sys		х	х	х	х	х	х
1b	kWh (-)	totales	"NEG"	Energía activa exportada		+	+	+	+	Т
2	kvarh t	totales	kvar sys			х	х	х	х	х
3		PF sys	Hz	Indicación de C, -C, L, -L dependiendo del cuadrante		x	x	x	х	x
4	PF L1	PF L2	PF L3	Indicación de C, -C, L, -L dependiendo del cuadrante			х	x	х	х
5	A L1	A L2	A L3				х	х	х	х
6	V L1-2	V L2-3	V L3-1				х	х	х	
7	V L1	V L2	V L3				х	х		

Notas: x = disponible

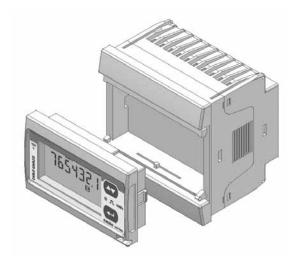
(kvarsys es la suma de los valores absolutos de cada kvar fase). El kvar fase aparece con el signo correcto.

Información adicional disponible en el display

Tipo	1ª línea	2ª línea	Notas
Información de contador 1	Y. 2007	r.A0	Año de producción y versión de firmware
Información de contador 2	valor	LEd (kWh)	KWh por impulso del LED
Información de contador 3	SYS [3F+N]	valor	Tipo de sistema y tipo de conexión
Información de contador 4	Ct rAt.	valor	Relación del transformador de corriente
Información de contador 5	Ut rAt.	valor	Relación de transformador de tensión
Información de contador 6	PuLSE (kWh)	valor	Salida de pulso: kWh por pulso
Información de contador 7	Agregar	valor	Dirección de comunicación en serie
Información de contador 8	valor	Sn	Dirección secundario (Protocolo M-bus)

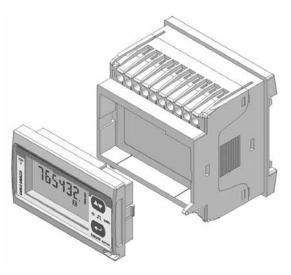
^{+ =} Sólo se miden los kvarh positivos (kvar sys es la suma algebraica de los kvar fase)

T = se suman los kvarh positivos y negativos y se miden en el mismo contador de kvarh

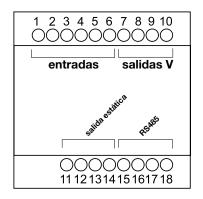

Lista de aplicaciones seleccionables

	Descripción	Notas
Α	Medidor energía activa	Medida de energía activa con algunos parámetros de menor importancia
В	Medidor energía activa y reactiva	Medida de energía activa y reactiva con algunos parámetros de menor importancia
С	Todas las variables	Se visualizan todas las variables disponibles (selección por defecto)
D	Todas las variables +	Se visualizan todas las variables disponibles +
E	Todas las variables +	Todas las variables con medidor de kWh exportados (negativos)
F	Todas las variables	Todas las variables con medidores de kWh importados y exportados

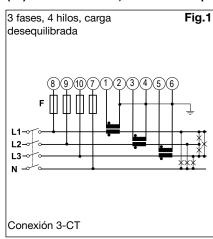
Notas:

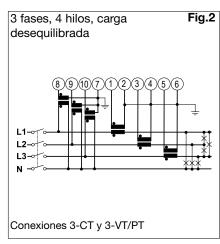

+ Sólo en las aplicaciones "D" y "E" se considera la dirección real de la corriente.

Dos posibilidades de montaje

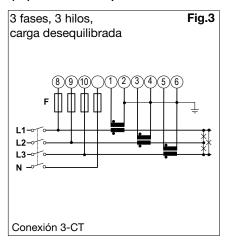

figurar el instrumento para su montaje sobre panel ...

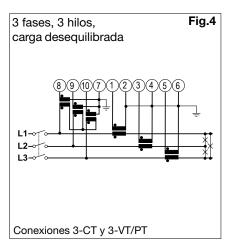
Mediante un display desmontable patentado se puede con-

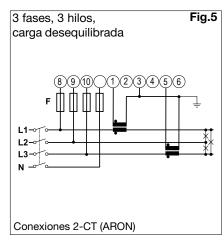


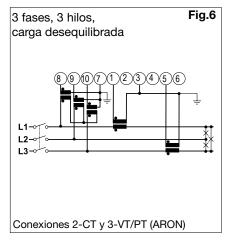

... o a carril DIN.

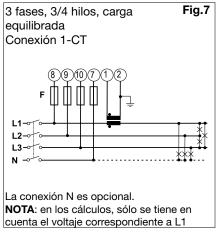
Diagramas de cableado

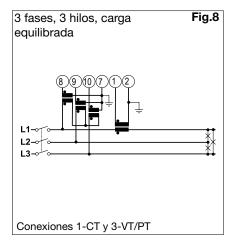



(6A) Autoalimentación, selección del tipo de sistema: 3F+N

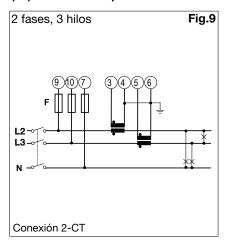


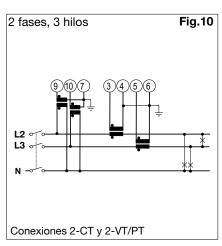

(6A) Selección del tipo de sistema: 3F+N

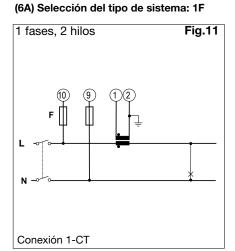




(6A) Autoalimentación, selección del tipo de sistema: 3F+1

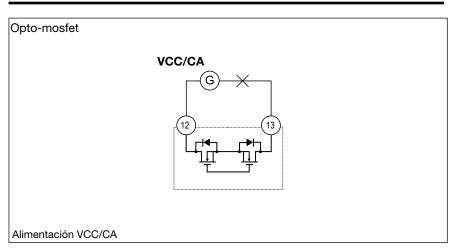






Diagramas de cableado


(6A) Selección del tipo de sistema: 2F



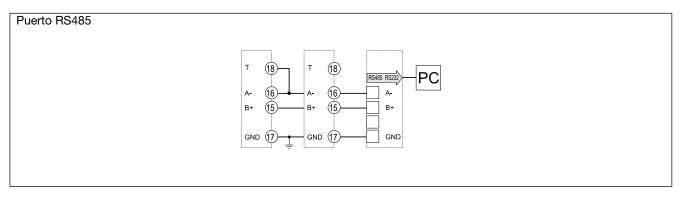

(6A) Selección del tipo de sistema: 1F

Diagrama de conexiones de salida estática

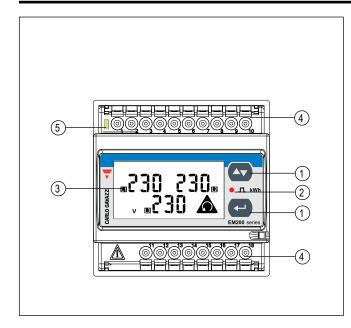


Diagrama de conexiones del puerto RS485

RS485 NOTA: Los dispositivos adicionales suministrados con el RS485 se conectan como se muestra arriba. La terminación de la salida en serie solo debe de ser conectada al último instrumento de la red, mediante un puente entre (B+) y (T).

Descripción del panel frontal

1. Teclado

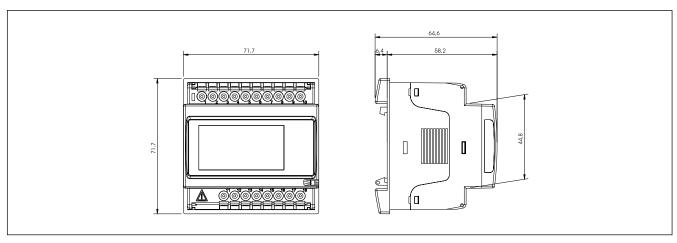
Para programar los parámetros de configuración y visualizar las páginas de las variables en el display.

2. LED salida de pulsos

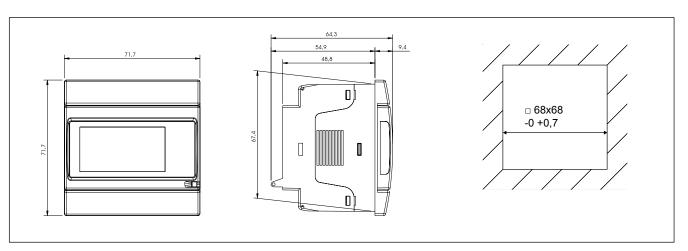
El parpadeo del LED rojo es proporcional a la energía medida.

3. Display

De tipo LCD son indicaciones alfanuméricas para visualizar todas las variables medidas.


4. Conexiones

Bloques de terminales a tornillo para las conexiones del instrumento.


5. LED verde

Se activa cuando la alimentación está disponible.

Dimensiones (configuración DIN)

Dimensiones (configuración para montaje sobre panel 72x72)

