PASOS EN LA INTERVENCIÓN SOBRE unidad AIRE ACONDICIONADO

1°) ¿Tiene refrigerante?

Presion= Tambiente=

2°) ¿ Le falta refrigerante?

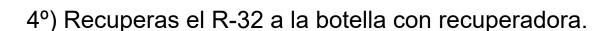
Recalentamiento modo frio = o en su defecto modo calor condensación baja

3°) ¿ Eficiencia de esta maquina en modo calor?

Modo calor I= Taire entrada= Taire salida=

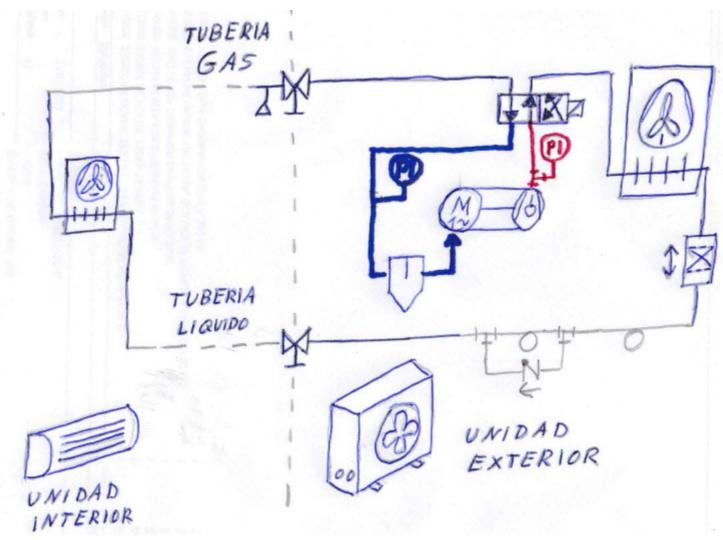
4°) ¿ Eficiencia de esta maquina en modo FRIO?

Modo frio I= Taire/%H entrada= Taire/%H salida=

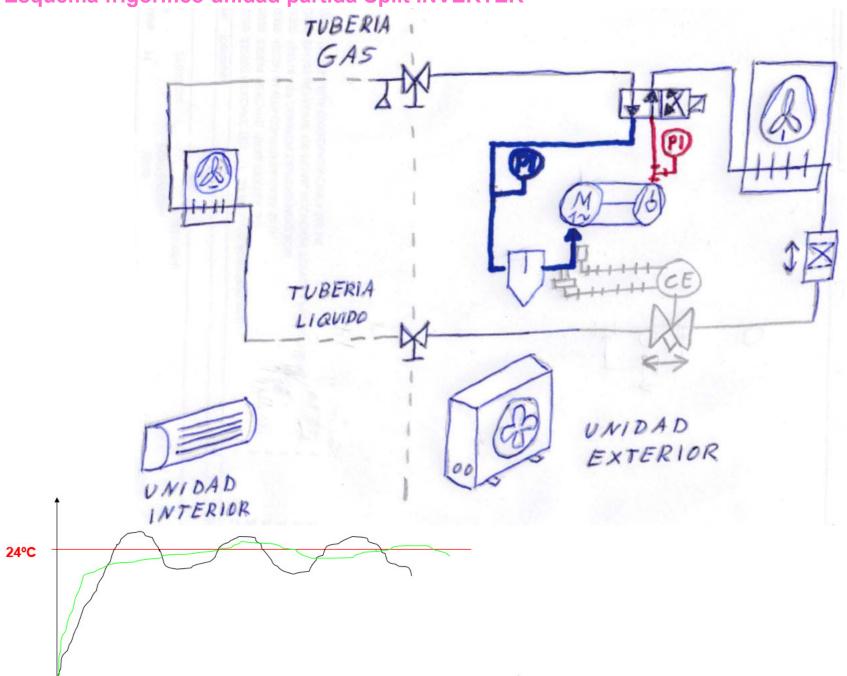

- 5°) Sacamos refrigerante.
- 6°) Cargamos refrigerante por peso AL CONOCER LA CARGA
- 7°) Cargamos refrigerante por recalentamiento AL DESCONOCER LA CARGA

PASOS EN LA PRACTICA SOBRE LA UNIDAD 3X1 intervienes en un circuito

1º) Vacio



- 2°) Cargas por recalentamiento (modo frio) R-32 buscas 12°C
- 3°) Tomas datos.



- 5°) Vacio
- 6°) Cargas por recalentamiento (modo frio) R-410A buscas 12°C
- 7°) Tomas datos.
- 8°) Recuperas el R-410A a la botella con recuperadora.

Esquema frigorifico unidad partida Split NO INVERTER

Esquema frigorífico unidad partida Split INVERTER

EFICIENCIA

Funcionando en modo frío:

• El EER (relación de eficiencia energética):

$$EER = \frac{Potencia - enfriamiento}{Potencia - consumida}$$

Esta relación podemos medirla:

- 1. Puntualmente
- 2. En unas condiciones medias de funcionamiento del equipo
- 3. Estacionalmente ayudados de registradores de datos que permitiran realizar el calculo a final de temporada

EFICIENCIA

Funcionando en modo calor:

El COP (relación de eficiencia energética):

$$COP = \frac{Potencia - calorífica}{Potencia - consumida}$$

Referencias del nuevo HE4 (diciembre 2019)

Las bombas de calor deberán tener un rendimiento mínimo medio estacional, SCOP superior a 2,5 unidades cuando las bombas de calor sean accionadas eléctricamente.

El valor del rendimiento estacional SCOP_{dhw} se determinará a una temperatura de preparación del ACS no inferior a 45 °C.

En caso de no disponer del valor de SCOP pero si del valor COP_{7/35°C} aplicaremos los factores de corrección del documento IDAE "PRESTACIONES MEDIAS ESTACIONALES DE LAS BOMBAS DE CALOR PARA PRODUCCIÓN DE CALOR EN EDIFICIOS" para calcular el SCOP

CONSUMOS

Para calcular la potencia eléctrica:

En monofásica para motores

PACTIVA= $v*i*cos \phi$ siendo:

 $\cos \varphi = \text{factor de potencia del motor}$

En trifásica para motores

PACTIVA= $\sqrt{3}$ *VL*IL*cos φ siendo:

 $\cos \varphi$ = factor de potencia del motor

El cos φ si se desconoce suponer 0,8 (referencia del IDAE)

Potencia sensible

En una batería que disipe calor o en un evaporador o condensador de agua podemos conocer la potencia sensible disipada aplicando la fórmula:

PSENSIBLE(Kcal/h) = $Ce^*Pe^*Q^*\Delta T$

Donde:

W = Potencia disipada.

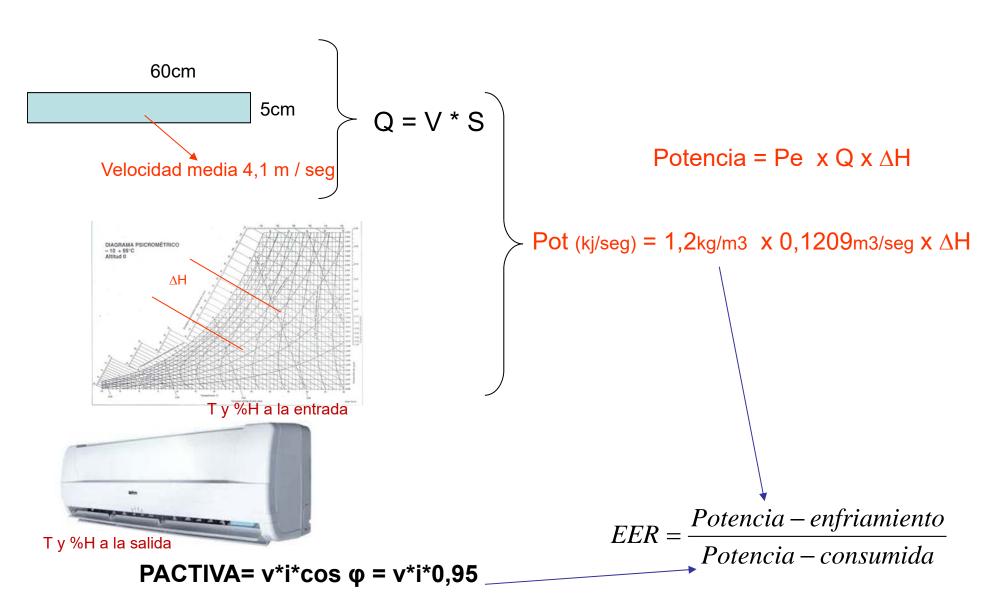
Pe = Peso específico del medio caloportador, aire o agua.

Ce = Calor específico del medio caloportador, aire o agua.

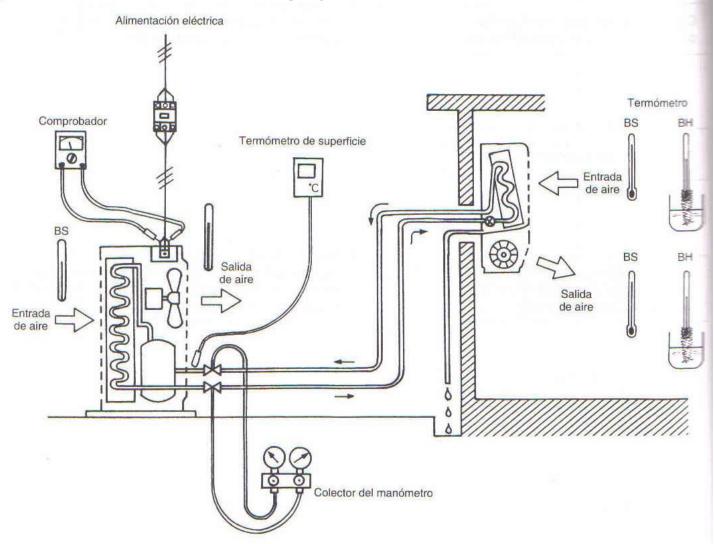
Q = Caudal del medio caloportador.

 ΔT = Diferencia de temperatura entre la entrada y la salida del medio caloportador.

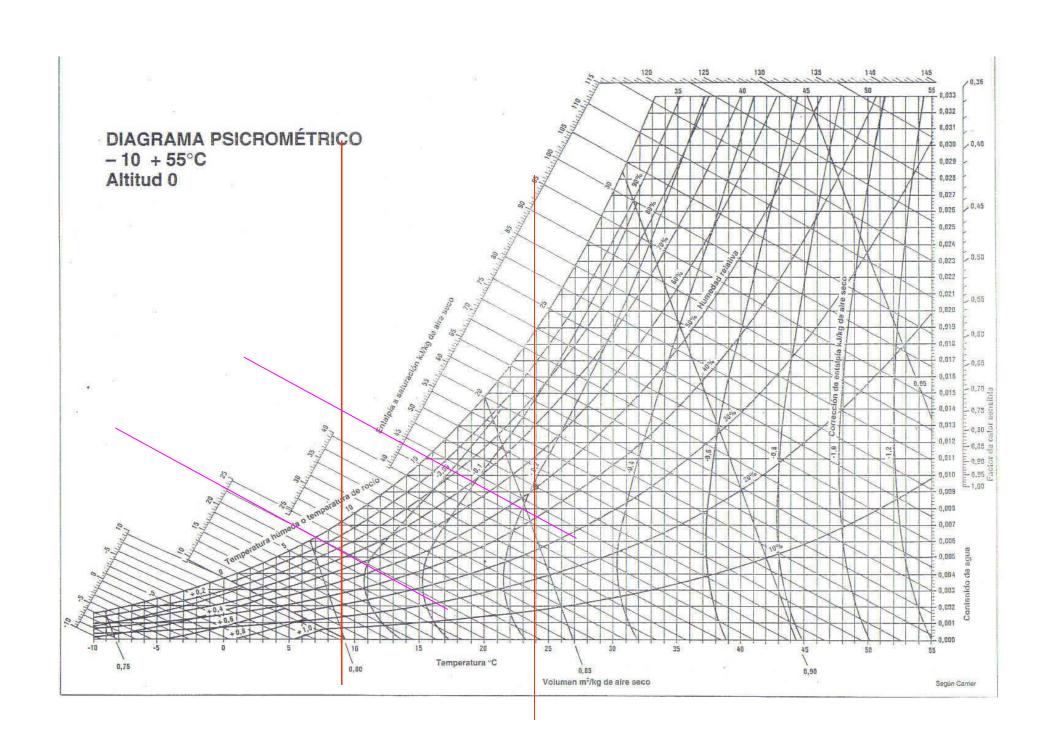
Medio de transporte	P _e en Kg/m³	C, en Kcal / Kg ℃
Aire	1,2	0,24
Agua	1000	1



En modo calor


Datos prácticos Medida de la eficiencia energética EN MODO FRIO

Vamos efectuar la medición de caudal a la salida



practica simulador

05-PRACTICA Aire Acondicionado Toma de datos para análisis de la carga y eficiencia del equipo

Tomaremos datos sobre la unidad funcionando para ajustar la carga de la misma (ATENCION INVERTER FORZAR 100%)

Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32

		VER COUTDOOR MANUEL
CUCIONI CONTROL	17050Btu/h	RA-50+35+35GW
Max working current	2000W/9.2A	11835Btuth
	12.0A	1500W/6.8A 1500W/6.8A
Heating capacity	17732Btu/h	122707 A8.8
Input power/current	1900W/8.8	nimited in the second
Max working current	11.0A	1350W16.0 1350W16.0
Rated voltage/frequency		7.8A 7.8A 230V ~ 50Hz
Max working pressure	0.68(A	ir in)/2.6(Air out)MPa
Noise Level		≤ 68 dB(A)
Refrigerant R410A	1.75kg	1.15kg 1.15k
Weight		115kg
Serial Number		40665388
Production date		2004.06

Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32

Cálculo da carga adicional de R-410A

Unidade interior	Diametro	Diametro	Distancia (m)	Distancia (m)
nº	Liquido	Gas	Liquido	Gas
1	1/4	1/2	23	23
2	1/4	3/8	21	21
3	1/4	3/8	27	27

	Densidade	1l/kg	34,3I/kg	
Unidade interior	CARGA REFRIX	Carga adicional kg	Carga adic. kg	Carga kg
nº	Ate 7m	Liquido	Gas (modo frio	Con adicional
1	1,75kg	0,374	0,063	2,19
2	1,15kg	0,341	0,029	1,52
3	1,15kg	0,439	0,073	1,66

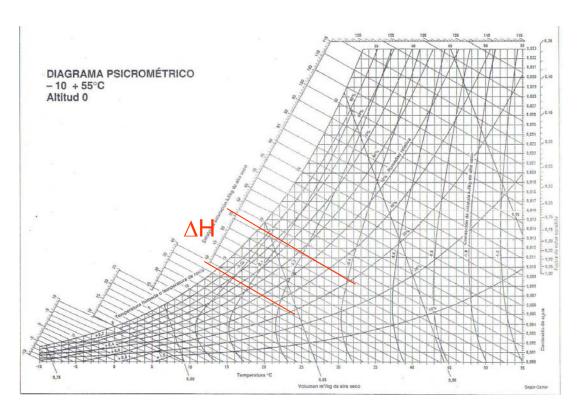
Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32

En placa los 2 circuitos gemelos MODO calor 3,57Kw con consumo 1,35Kw, y MODO frio 3,5Kw con consumo 1,5Kw

$$Q = V * S$$

<u>Velocidad:</u> media medida con anemometro en m3/h (unidad en maxima velocidad) Sección: a la salida medida con un metro

$$Q = V*S = (0,6*0,05)m* 4,1m/seg = 0,121m3/seg = 435m3/h$$


Unidade interior	Saida aire secc	Saida aire secc	Saida aire vel	Caudal
nº	(m x m)	m2	(m/seg)	(m3/h)
1	0,07 x 0,72	0,0504	4,1	743,904
2	0,05 x 0,59	0,0295	4,1	435,42
3	0,05 x 0,60	0,0295	4,1	435,42

TODA MAQUINA DE AIRE ACONDICIONADO SE CARGA Y AJUSTA EN MODO FRIC (Si es invertir debe forzarse a máxima velocidad)

Funcionando en modo frio con R-32:

Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32

Funcionando en modo frio:

Entrada:

Temp: °C

%Hr: %

Salida:

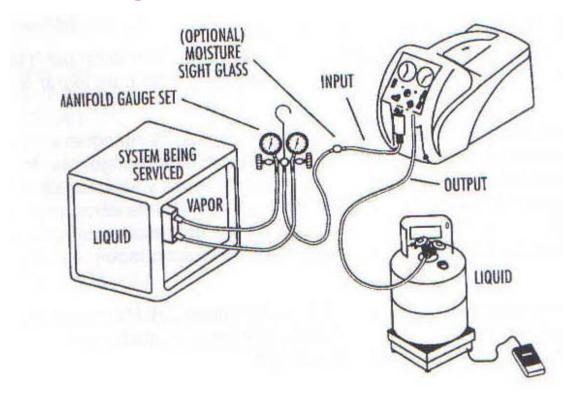
Temp: °C

%Hr: %

Ptotal = Pe $\times Q \times \Delta H$

Ptotal = $1,2kg/m3 \times 0,126m3/seg \times (-)kj/kg = kW$

Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32


PACTIVA= V*I*cos φ siendo: cos φ = factor de potencia del motor

PACTIVA= 230*I*cos = W

 $\cos \varphi$ se estimara 0,8 en caso de no disponer de dato fabricante

$$EER = \frac{Potencia - frigorifica}{Potencia - consumida}$$

Recuperación del refrigerante

Extraeremos todo el refrigerante pesando el mismo para anotar la carga de la maquina

Carga teórica circuito R-32A kg

Carga de refrigerante recuperada R-32A kg

Split 3x1KFRA-55+35+35GW de R-410A (1,15kg) adaptación a R-32

Repetimos el proceso rellenando la tabla para los 2 refrigerantes

DATOS CON R-32											
Unidade interior	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Pot. prod	Pot. Consum	CEE	Carga kg
nº	I(A)	Pbaixa(bar)	Tevapor(ºC)	Ttubo gas(ºC)	Taire(Tamb/%	INTaire(Texp/%H)	Requecemento	KW	KW		Con adicional
1											
2											
3											
DATOS CON R-410)A										
Unidade interior	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Modo frio	Pot. prod	Pot. Consum	CEE	Carga kg
nº	I(A)	Pbaixa(bar)	Tevapor(ºC)	Ttubo gas(ºC)	Taire(Tamb/%l	INTaire(Texp/%H)	Requecemento	KW	KW		Con adicional
1											
2											
3							_				

Unidade interior	Color fase	MODO FRIO	MODO FRIO	Caudal	Carga kg
nº	mangueira alim.	Potencia	Intensidade	(m3/h)	teorica
1	Bermello	4,8Kw	12A	743,904	2,19
2	Blanco	3,5kW	8,8A	435,42	1,52
3	Marron	3,5kW	8,8A	435,42	1,66

PACTIVA= 230*I*cos

Ptotal = Pe $x Q x \Delta H$

 $EER = \frac{Potencia - frigorifica}{Potencia - consumida}$