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¡E DÁLLE… ! 
 

V elaquí estamos coa nosa teima. Un no-
vo curso se presenta ante nós e o 
Club Matemático DURÁN LORIGA 

está a rebulir dende os primeiros días do co-
mezo das clases. 
 
          Moitas alumnas e 
alumnos están a traballar 
en novos artigos que irán 
aparecendo nos próximos 
números do noso boletín 
DOUSPIERRE; outros andan ás voltas co 
“Xogo europeo da Bolsa” (seis equipos do IES 
Ramón Otero Pedrayo participan xunto a ou-
tros 400 equipos de toda Galicia neste con-
curso europeo que rematará o  vindeiro 3 de 
decembro). 

 
         Non nos esqueceremos 
tampouco neste curso das 
actividades tradicionais: 
Olimpíada matemática para 
segundo de ESO, Rallye Ma-

temático,Canguro Matemático, Semana Ma-
temática, Día Escolar das Matemáticas, Día 
da Ciencia na Rúa,… nin doutros moitos 
proxectos que xa vos iremos contando. 
 
          ¡Únete a nós! ¡Participa nas actividades 
do Club Matemático DURÁN LORIGA! 

Ó 
 longo da nosa vida fomos tomando para nós moitos números 
dos que nos fixemos propietarios exclusivos: o número do 
noso teléfono, o do noso carné de identidade, o da matrícula 

do noso coche,… Outros son números que compartimos con máis 
persoas: o número do edificio no que vivimos, o número do código 
postal,… Pero os números que máis estimamos están relacionados 
co paso do tempo: a data do noso aniversario e moitas outras que 
cada un vai gardando no seu recordo. 
          Se observamos as fotos (Xardíns de Méndez Núñez, A Coru-
ña) decatámonos que nos tocou vivir dous anos capicúas (eses nú-
meros que se len do mesmo xeito de dereita a esquerda que de es-
querda a dereita). ¿Será probable que vivamos outro capicúa? 
¿Será probable que os nosos sucesores inmediatos vivan un ou dous 
capicúas? 
          ¿Quen reparou que ó número do ano que estamos a vivir é un 
número  primo? (recorda que un número natural é primo cando soa-
mente é divisible por si mesmo e pola unidade). ¿É probable que vi-
vamos outro ano primo? ¿E dous?. ¿Cantos anos primos xemelgos 
haberá neste século? ¿É probable que vivamos un par de anos pri-
mos xemelgos? 
          Nas fotos do xardín podes atopar 
outros tipos de números: pares, impa-
res, perfectos, triangulares,… ¿podes 
identificalos? 
          E para rematar deixemos algun-
has interrogantes nas que pensar: ¿Cando será o próximo ano ca-
drado?, ¿e o próximo ano cúbico?. ¿Qué tipo de ano é o ano que 
vén?, ¿Cantos factores primos e cantos divisores ten 2004?. 
          Ben, por se vos é de utilidade, direivos que o vindeiro 25 de 
xullo cae en domingo, e iso significa… (¡que non nos pase nada!). 

NÚMEROS NO XARDÍN.  
Eses números que nos tocou vivir… 

Números primos entre 2000 e 
2100 

 
2003, 2011, 2017, 2027, 2029,
2039, 2053, 2063, 2069, 2081,
2083,   2087,   2089,  2099. 
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Un lugar xeométrico é un conxunto de puntos do plano ou do espacio que cumpren unha 
certa propiedade xeométrica. 

Por exemplo, unha circunferencia de centro C e raio r é o lugar xeométrico dos puntos do 
plano que cumpren que a distancia dende cada un deles ata  C é igual a r.  

 
        Se aplicamos o Teorema de 
Pitágoras ó triángulo rectángulo que 
se observa na figura, obtemos a 
ecuación da circunferencia de centro 

C (a,b) e raio r: 
 

(x-a)² + (y-b)² = r². 
 

         
        De maneira similar ó que acabamos de facer, 
podemos definir a superficie esférica coma o lugar 
xeométrico dos puntos do espacio que equidistan dun 
punto fixo chamado centro. A distancia á que se atopa do 
centro cada un deses puntos é o raio. 
 
         

As elipses (esas curvas que tanto empregan os 
xardineiros) son o lugar xeométrico dos puntos do 
plano que cumpren a propiedade de que a suma das 
distancias dende cada un deles a outros dous puntos 
fixos, denominados focos, sempre é unha cantidade 
constante. 

        A mediatriz dun 
segmento AB é o lugar 
xeométrico dos puntos do plano que están a igual distancia de A e 
de B. 
        Por outra parte, a bisectriz dun ángulo de lados r e s é o lugar 
xeométrico dos puntos do plano que equidistan de  r e de s. 

 
        Os que acabamos de dar son unha pequena 
escolma de exemplos de lugares xeométricos, ¿podes 
dar ti outros diferentes? 

José Manuel Botana Fernández. 4º B. 

LUGARES XEOMÉTRICOS 
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DIAGONAL 

O  segmento de recta que une dous vértices non consecutivos dun  polígono ou dous vér-
tices non situados na mesma cara dun poliedro chámase diagonal. Arredor deste ele-
mento de aparencia e definición tan simple imos facer de seguido algunhas reflexións. 

 
Para determinar a medida da diagonal dun ortoedro de-

bemos facer dúas aplicacións sucesivas do Teorema de Pitágo-
ras. Primeiro que hai que  calcular a medida diagonal dunha cara 
(l² = a² + b²), e a continuación xa podemos obter o valor da me-
dida da diagonal do ortoedro: 

 
 d² = l² + c² = (a² + b²) + c² = a² + b² + c². Polo tanto:  
 
 

        Fixémonos agora nos polígonos convexos; ¿cal é o número das súas diagonais?. Os triángu-
los non teñen diagonais, pois os seus vértices son contiguos. Todos os cuadriláteros posúen dú-
as diagonais; os pentágonos teñen cinco; os hexágonos nove... 
 
 
 
 
 
 

A partir destas observacións, podemos intuír unha relación entre o número de vértices 
dun polígono e o seu número de diagonais, abonda ter en conta a sucesión que se obtén o calcu-
lar as diferencias de termos consecutivos da columna "Nº de diagonais" correspondente á se-
guinte táboa: 

a   +   b   +   c2 22d = 

Polígono Nº de vértices Nº de Sucesión de  

Triángulo 3 0  

Cuadrilátero 4 2 2 

Pentágono 5 5 3 

Hexágono 6 9 4 

Heptágono 7 14 5 

Octógono 8 20 6 



Tendo o anterior en conta, x a podemos calcular, por recorrencia, cal é o número de dia-
gonais que teñen os polígonos convexos. Agora xurde unha pregunta: ¿non podemos acadar unha 
fórmula que nos dea o número de diagonais en función do número de vértices?. Se observamos 
os gráficos con atención constatamos que, nun polígono de n vértices, cada un deles únese con n-
3 (debemos excluílo a el e os dos vértices contiguos). Así, pois teriamos un total de n(n-3) posi-
bilidades o ter en conta todos os vértices do polígono.  

Agora ben, neste reconto estamos tendo en conta os 
vértices de partida e de chegada que determinan cada diago-
nal; polo tanto o número de diagonais dun polígono convexo de 
n vértices pode calcularse utilizando a seguinte expresión: 
 
        Pousemos agora a nosa mirada sobre as diagonais dos cuadriláteros: Tanto no cadrado co-
ma no rombo as diagonais córtanse perpendicularmente no seu punto medio. No rectángulo e no 
romboide só se cumpre a segunda propiedade (é dicir, as diagonais córtanse no punto medio) e 
noutros cuadriláteros cúmprese unicamente a primeira.  

 
 
 
 
 

 
        Poderiamos, pois, clasificar os cuadriláteros tomando como  
criterio de clasificación a maneira en que se cortan as súas  
diagonais. 

Jonathan Pérez Tomé.  
4º A. 
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nº de diagonais =
n (n - 3)

2

 

PENSAR É DIVERTIDO 

         A Beatriz gústalle calcular a 
suma das cifras que ve no seu re-
loxo dixital (por exemplo, se o re-
loxo marca 21:17, entón Beatriz 
obtén 11). ¿Cal é a máxima suma 
que pode obter?. 

         Se  
 
 

         ¿Canto vale       
 
 
 

         Ana ten unha caixa con 9 la-
pis. Polo menos un é azul. Collendo 
catro lapis calquera polo menos 
dous son da mesma color; e collen-
do 5 lapis calquera, como moito 
tres son da mesma color. ¿Cantos 
lapis azuis ten Ana? 
 
 
 

Problema tomados do  
Canguro Matemático 2003. 

2 0 0 3


